Crassulacean Acid Metabolism: Current Status and Perspectives

  • K. Winter
  • J. A. C. Smith
Part of the Ecological Studies book series (ECOLSTUD, volume 114)

Abstract

In this concluding chapter, we review some of the major findings discussed in this book and their implications for our understanding of the CAM pathway. In particular, we highlight areas of uncertainty as well as consensus and refer to a number of recent findings not covered in the individual chapters. We shall focus on the biochemistry and energetics of the CAM pathway, the developmental and environmental control of its expression in different species, factors determining the growth and productivity of CAM plants in the field, and finally its possible evolutionary origins.

Keywords

Starch Chlorophyll Carbohydrate Citrate Cytosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams WW, Nishida K, Osmond CB (1986) Quantum yields of CAM plants measured by photosynthetic O2 exchange. Plant Physiol 81: 297–300PubMedCrossRefGoogle Scholar
  2. ap Rees T (1985) The organization of glycolysis and the oxidative pentose phosphate pathway in plants. In: Douce R, Day DA (eds) Encyclopedia of plant physiology. New Series, vol 18. Higher plant cell respiration. Springer, Berlin Heidelberg New York, pp 391–417Google Scholar
  3. ap Rees T (1990) Carbon metabolism in mitochondria. In: Dennis DT, Turpin DH (eds) Plant physiology, biochemistry and molecular biology. Longman, Harlow, pp 106–123Google Scholar
  4. Arron GP, Spalding MH, Edwards GE (1979) Isolation and oxidative properties of intact mitochondria from the leaves of Sedum praealtum. A crassulacean acid metabolism plant. Plant Physiol 64: 182–186PubMedCrossRefGoogle Scholar
  5. Axelrod DI, Raven PH (1978) Late Cretaceous and Tertiary vegetation history of Africa. In: Werger MJA (ed) Biogeography and ecology of southern Africa. Junk, The Hague, pp 77–130Google Scholar
  6. Ball E, Hann J, Kluge M, Lee HSJ, Lüttge U, Orthen B, Popp M, Schmitt A, Ting IP (1991) Ecophysiological comportment of the tropical CAM-tree Clusia in the field. II. Modes of photosynthesis in trees and seedlings. New Phytol 117: 483–491CrossRefGoogle Scholar
  7. Barthlott W, Hunt WR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants II. Flowering plants: dicotyledons; magnoliid, hamamelid and caryophyllid families. Springer, Berlin Heidelberg New York, pp 161–197Google Scholar
  8. Baur B, Fischer K, Winter K, Dietz KJ (1994) cDNA sequence of a protein kinase from the halophyte Mesembryanthemum crystallinum L., encoding a SNF-1 homologue. Plant Physiol 106: 1225–1226PubMedCrossRefGoogle Scholar
  9. Baur B, Fischer K, Winter K, Dietz KJ (1995) Molecular cloning of a protein kinase preferentially expressed upon induction of crassulacean acid metabolism in the facultative CAM plant Mesembryanthemum crystallinum L. (submitted)Google Scholar
  10. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504CrossRefGoogle Scholar
  11. Black CC, Carnal NW, Kenyon WH (1982) Compartmentation and the regulation of CAM. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 51–68Google Scholar
  12. Bloom AJ, Troughton JH (1979) High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38: 35–43CrossRefGoogle Scholar
  13. Bock W (1962) A study of fossil Isoetes. J Paleontol 36: 53–59Google Scholar
  14. Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C (1994) Carbonisotope composition of biochemical fractions and the regulation of carbon balance in leaves of the C3-crassulacean acid metabolism intermediate Clusia minor L. growing in Trinidad. Plant Physiol 106: 493–501PubMedGoogle Scholar
  15. Borland AM, Griffiths H, Maxwell C, Fordham MC, Broadmeadow MSJ (1995) CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: the role of organic acid speciation and decarboxylation. (submitted)Google Scholar
  16. Bremberger C, Haschke H-P, Lüttge U (1988) Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible crassulacean acid metabolism. Planta 175: 465–470CrossRefGoogle Scholar
  17. Brulfert J, Vidal J, Keryer E, Thomas M, Gadal P, Queiroz O (1985) Phytochrome control of phosphoenolpyruvate carboxylase synthesis and specific RNA level during photo-periodic induction in a CAM plant. Physiol Vég 23: 921–928Google Scholar
  18. Brulfert J, Kluge M, Güçlü S, Queiroz O (1988) Interaction of photoperiod and drought as CAM inducing factors in Kalanchoë blossfeldiana Poelln., cv. Tom Thumb. J Plant Physiol 133: 222–227Google Scholar
  19. Brulfert J, Güçlü S, Taybi T, Pierre JN (1993) Enzymatic responses to water stress in detached leaves of the CAM plant Kalanchoë blossfeldiana Poelln. Plant Physiol Biochem 31: 491–497Google Scholar
  20. Bryce JH, Hill SA (1993) Energy production in plant cells. In: Lea PJ, Leegood RC (eds) Plant biochemistry and molecular biology. Wiley, Chichester, pp 1–26Google Scholar
  21. Carnal NW, Black CC (1989) Soluble sugars as carbohydrate reserve for CAM in pineapple leaves. Plant Physiol 90: 91–100PubMedCrossRefGoogle Scholar
  22. Chase MW, Soltis DE, Olmstead RG, and 39 others (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80: 528–580CrossRefGoogle Scholar
  23. Collinson ME (1991) Diversification of modern heterosporous pteridophytes. In: Blackmore S, Barnes SH (eds) Pollen and spores. Clarendon Press, Oxford, pp 119–150Google Scholar
  24. Conti S, Smirnoff N (1994) Rapid triggering of malate accumulation in the C3/CAM intermediate plant Sedum telephium: relationship with water status and phosphoenolpyruvate carboxylase. J Exp Bot 45: 1613–1621CrossRefGoogle Scholar
  25. Coté FX, André M, Folliot M, Massimino D, Daguenet A (1989) CO2 and O2 exchanges in the CAM plant Ananas comosus (L.) Merr. Plant Physiol 89: 61–68PubMedCrossRefGoogle Scholar
  26. Crane PR, Lidgard S (1989) Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246: 675–678PubMedCrossRefGoogle Scholar
  27. Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374: 27–33CrossRefGoogle Scholar
  28. Cui M, Nobel PS (1994) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ 17: 935–944CrossRefGoogle Scholar
  29. Cui M, Miller PM, Nobel PS (1993) CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiol 103: 519–524PubMedGoogle Scholar
  30. Day DA (1980) Malate decarboxylation by Kalanchoë daigremontiana mitochondria and its role in crassulacean acid metabolism. Plant Physiol 65: 675–679PubMedCrossRefGoogle Scholar
  31. DeRocher EJ, Bohnert HJ (1993) Developmental and environmental stress employ different mechanisms in the expression of a plant gene family. Plant Cell 5: 1611–1625PubMedCrossRefGoogle Scholar
  32. Duff SMG, Chollet R (1995) In vivo regulation of wheat-leaf phosphoenolpyruvate carboxylase by reversible phosphorylation. Plant Physiol 107: 775–782PubMedGoogle Scholar
  33. Edwards GE, Foster JG, Winter K (1982) Activity and intracellular compartmentation of enzymes of carbon metabolism in CAM plants. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 92–111Google Scholar
  34. Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59: 86–90PubMedCrossRefGoogle Scholar
  35. Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24: 411–439CrossRefGoogle Scholar
  36. Ehleringer J, Pearcy RW (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol 73: 555–559PubMedCrossRefGoogle Scholar
  37. Fahrendorf T, Holtum JAM, Mukherjee U, Latzko E (1987) Fructose 2, 6-bisphos- phate, carbohydrate partitioning, and crassulacean acid metabolism. Plant Physiol 84: 182–187PubMedCrossRefGoogle Scholar
  38. Feng W, Ning L, Daley LS, Moreno Y, Azarenko A, Criddle RS (1994) Theoretical fitting of energetics of CAM path to calorimetric data. Plant Physiol Biochem 32: 591–598Google Scholar
  39. Franco AC, Ball E, Lüttge U (1992) Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant Cell Environ 15: 821–829CrossRefGoogle Scholar
  40. Gardeström P, Edwards GE (1985) Leaf mitochondria (C3 + C4 + CAM). In: Douce R, Day DA (eds) Encyclopedia of plant physiology, New Series, vol 18, Higher plant cell respiration. Springer, Berlin Heidelberg New York, pp 314–346Google Scholar
  41. Gemel J, Randall DD (1992) Light regulation of leaf mitochondrial pyruvate dehydrogenase complex. Role of photorespiratory carbon metabolism. Plant Physiol 100: 908–914PubMedCrossRefGoogle Scholar
  42. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, CambridgeGoogle Scholar
  43. Griffiths H (1988) Crassulacean acid metabolism: a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15: 43–92CrossRefGoogle Scholar
  44. Griffiths H (1989) Carbon dioxide concentration mechanisms and the evolution of CAM in vascular ephiphytes. In: Lüttge U (ed) Vascular plants as epiphytes. Springer, Berlin Heidelberg New York, pp 42–86CrossRefGoogle Scholar
  45. Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15: 1051–1062CrossRefGoogle Scholar
  46. Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60: 176–184CrossRefGoogle Scholar
  47. Griffiths H, Ong BL, Avadhani PN, Goh CJ (1989) Recycling of respiratory CO2 during crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. Planta 179: 115–122CrossRefGoogle Scholar
  48. Groenhof AC, Smirnoff N, Bryant JA (1990) The appearance of a new molecular species of phosphoerco/pyruvate carboxylase (PEPC) and the rapid induction of CAM in Sedum telephium L. Plant Cell Environ 13: 437–446CrossRefGoogle Scholar
  49. Guralnick LJ, Ting IP (1988) Seasonal patterns of water relations and enzyme activity of the facultative CAM plant Portulacaria afra (L.) Jacq. Plant Cell Environ 11: 811–818CrossRefGoogle Scholar
  50. Haag-Kerwer A, Franco AC, Liittge U (1992) The effect of temperature and light on the gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. J Exp Bot 43: 345–352CrossRefGoogle Scholar
  51. Hajirezaei M, Sonnewald U, Viola R, Carlisle S, Dennis D, Stitt M (1994) Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192: 16–30Google Scholar
  52. Hanning I, Heldt HW (1993) On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves. Partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products. Plant Physiol 103: 1147–1154PubMedGoogle Scholar
  53. Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100: 1621–1626PubMedCrossRefGoogle Scholar
  54. Hermans J, Westhoff P (1990) Analysis of expression and evolutionary relationships of phosphoenolpyruvate carboxylase genes in Flaveria trinerva (C4) and F. pringlei (C3). Mol Gen Genet 224: 459–468PubMedCrossRefGoogle Scholar
  55. Hinkle PC, Kumar MA, Resetar A, Harris DL (1991) Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30: 3576–3582PubMedCrossRefGoogle Scholar
  56. Holtum JAM, Osmond CB (1981) The gluconeogenic metabolism of pyruvate during deacidification in plants with crassulacean acid metabolism. Aust J Plant Physiol 8: 31–44CrossRefGoogle Scholar
  57. Holtum JAM, Winter K (1982) Activity of enzymes of carbon metabolism during the induction of crassulacean acid metabolism in Mesembryanthemum crystallinum L. Planta 155: 8–16CrossRefGoogle Scholar
  58. Ihlenfeldt HD (1994) Diversification in an arid world: the Mesembryanthemaceae. Annu Rev Ecol Syst 25: 521–546CrossRefGoogle Scholar
  59. Ingram J, Smith JAC (1995) Developmental regulation of NAD+- and NADP+- malic enzyme activities in the CAM plant Kalanchoë daigremontiana. (submitted)Google Scholar
  60. Israel AA, Nobel PS (1994) Activities of carboxylating enzymes in the CAM species Opuntia ficus-indica grown under current and elevated CO2 concentrations. Photosyn Res 40: 223–229CrossRefGoogle Scholar
  61. Jiao J, Chollet R (1991) Posttranslational regulation of phosphoenolpyruvate carboxylases in C4 and crassulacean acid metabolism plants. Plant Physiol 95: 981–985PubMedCrossRefGoogle Scholar
  62. Kalt W, Osmond CB, Siedow JN (1990) Malate metabolism in the dark after 13CO2 fixation in the crassulacean plant Kalanchoë tubiflora. Plant Physiol 94: 826–832PubMedCrossRefGoogle Scholar
  63. Lambers H (1990) Oxidation of mitochondrial NADH and the synthesis of ATP. In: Dennis DT, Turpin DH (eds) Plant Physiology, biochemistry and molecular biology. Longman, Harlow, pp 124–143Google Scholar
  64. Lance C, Chauveau M, Dizengremel P (1985) The cyanide-resistant pathway of plant mitochondria. In: Douce R, Day DA (eds) Encyclopedia of plant physiology, New Series, vol 18. Higher plant cell respiration. Springer, Berlin Heidelberg New York, pp 202–247Google Scholar
  65. Lepiniec L, Vidal J, Chollet R, Gadal P, Cretin C (1994) Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci 99: 111–124CrossRefGoogle Scholar
  66. Li B, Chollet R (1994) Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch Biochem Biophys 314: 247–254PubMedCrossRefGoogle Scholar
  67. Lüttge U (1988) Day-night changes of citric acid levels in CAM: phenomenon and ecophysiological significance. Plant Cell Environ 11: 445–451CrossRefGoogle Scholar
  68. Lüttge U, Ball E (1987) Dark respiration of CAM plants. Plant Physiol Biochem 25: 3–10Google Scholar
  69. Lüttge U, Smith JAC (1988) CAM plants. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman, Harlow, pp 417–452Google Scholar
  70. Lüttge U, Smith JAC, Marigo G, Osmond CB (1981) Energetics of malate accumulation in the vacuole of Kalanchoë tubiflora cells. FEBS Lett 126: 81–84CrossRefGoogle Scholar
  71. Luo Y, Nobel PS (1993) Growth characteristics of newly initiated cladodes of Opuntia ficus-indica as affected by shading, drought and elevated CO2. Physiol Plant 87: 467–474CrossRefGoogle Scholar
  72. Mägdefrau K (1968) Paläobiologie der Pflanzen. Fischer, JenaGoogle Scholar
  73. Martin CE, Christensen NL, Strain BR (1981) Seasonal patterns of growth, tissue acid fluctuations, and 14CO2 uptake in the crassulacean acid metabolism epiphyte Tillandsia usneoides L. (Spanish moss). Oecologia 49: 322–328CrossRefGoogle Scholar
  74. Maxwell C, Griffiths H, Young AJ (1994) Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. Func Ecol 8: 746–754CrossRefGoogle Scholar
  75. Medina E (1974) Dark CO2 fixation, habitat preference and evolution within the Bro- meliaceae. Evolution 28: 677–686CrossRefGoogle Scholar
  76. Medina E (1982) Temperature and humidity effects on dark CO2 fixation by Kalanchoë pinnata. Z Pflanzenphysiol 107: 251–258Google Scholar
  77. Medina E (1984) On the temperature dependence of dark CO2 fixation in CAM plants: acidity, growth and δ 13C values. In: Medina E (ed) Physiological ecology of CAM plants. CIET (Unesco-IVIC), Caracas, pp 52–72Google Scholar
  78. Medina E, Osmond CB (1981) Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoë daigremontiana. Aust J Plant Physiol 8: 641–649Google Scholar
  79. Medina E, Olivares E, Diaz M (1986) Water stress and light intensity effects on growth and nocturnal acid accumulation in a terrestrial CAM bromeliad (Bromelia humilis Jacq.) under natural conditions. Oecologia 70: 441–446CrossRefGoogle Scholar
  80. Medina E, Lüttge U, Leal F, Ziegler H (1994a) Carbon and hydrogen isotope ratios in bromeliads growing under different light environments in natural conditions. Bot Acta 104: 47–52Google Scholar
  81. Medina E, Ziegler H, Lüttge U, Trimborn P, Francisco M (1994b) Light conditions during growth as revealed by δ 13C values of leaves of primitive cultivars of Ananas comosus, an obligate CAM species. Func Ecol 8: 298–305CrossRefGoogle Scholar
  82. Milburn TR, Pearson DJ, Ndegwe NA (1968) Crassulacean acid metabolism under natural tropical conditions. New Phytol 67: 883–897CrossRefGoogle Scholar
  83. Millar AH, Wiskich JT, Whelan J, Day DA (1993) Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett 329: 259–262PubMedCrossRefGoogle Scholar
  84. Monson RK (1989) On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). Adv Ecol Res 19: 57–110CrossRefGoogle Scholar
  85. Moore AL, Siedow JN (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta 1059: 121–140PubMedCrossRefGoogle Scholar
  86. Moore AL, Gemel J, Randall DD (1993) The regulation of pyruvate dehydrogenase activity in pea leaf mitochondria. Plant Physiol 103: 1431–1435PubMedGoogle Scholar
  87. Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, LondonGoogle Scholar
  88. Nobel PS (1991) Environmental productivity indices and productivity for Opuntia ficus-indica under current and elevated atmospheric CO2 levels. Plant Cell Environ 14: 637–646CrossRefGoogle Scholar
  89. Nobel PS (1994) Remarkable agaves and cacti. Oxford University Press, New YorkGoogle Scholar
  90. Nobel PS, Hartsock TL (1983) Relationships between photosynthetically active radiation, nocturnal acid accumulation, and CO2 uptake for a crassulacean acid metabolism plant, Opuntia ficus-indica. Plant Physiol 71: 71–75PubMedCrossRefGoogle Scholar
  91. Nobel PS, Hartsock TL (1986) Short-term and long-term responses of crassulacean acid metabolism plants to elevated CO2. Plant Physiol 82: 604–606PubMedCrossRefGoogle Scholar
  92. Nobel PS, Israel AA (1994) Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. J Exp Bot 45: 295–303CrossRefGoogle Scholar
  93. Nobel PS, Garcia-Moya E, Quero E (1992) High annual productivity of certain agaves and cacti under cultivation. Plant Cell Environ 15: 329–335CrossRefGoogle Scholar
  94. Nobel PS, Cui M, Israel AA (1994a) Light, chlorophyll, carboxylase activity and CO2 fixation at various depths in the chlorenchyma of Opuntia ficus-indica (L.) Miller under current and elevated CO2. New Phytol 128: 315–322CrossRefGoogle Scholar
  95. Nobel PS, Cui M, Miller PM, Luo Y (1994b) Influences of soil volume and an elevated CO2 level on growth and CO2 exchange for the crassulacean acid metabolism plant Opuntia ficus-indica. Physiol Plant 90: 173–180CrossRefGoogle Scholar
  96. Olivares E, Faist K, Kluge M, Lüttge U (1993) 14CO9 pulse-chase labelling in Clusia minor L. J Exp Bot 44: 1527–1533CrossRefGoogle Scholar
  97. Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414CrossRefGoogle Scholar
  98. Osmond CB (1982) Carbon cycling and stability of the photosynthetic apparatus in CAM. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 112–127Google Scholar
  99. Osmond CB, Nott DL, Firth PM (1979) Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in eastern Australia. Oecologia 40: 331–350CrossRefGoogle Scholar
  100. Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology. New Series, vol 12B. Springer, Berlin Heidelberg New York, pp 479–547CrossRefGoogle Scholar
  101. Osmond CB, Holtum JAM, O’Leary MH, Roeske C, Wong OC, Summons RE, Avadhani PNC (1988) Regulation of malic-acid metabolism in crassulacean-acid-metabolism plants in the dark and light: in-vivo evidence from 13C-labelling patterns after 13CO2 fixation. Planta 175: 184–192CrossRefGoogle Scholar
  102. Osmond CB, Adams WW, Smith SD (1989) Crassulacean acid metabolism. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Chapman and Hall, London, pp 255–280CrossRefGoogle Scholar
  103. Pfitsch WA, Smith AP (1988) Growth and photosynthesis of Aechmea magdalenae, a terrestrial CAM plant in a tropical moist forest, Panama. J Trop Ecol 4: 199–207CrossRefGoogle Scholar
  104. Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105: 77–97CrossRefGoogle Scholar
  105. Popp M, Kramer D, Lee H, Diaz M, Ziegler H, Lüttge U (1987) Crassulacean acid metabolism in tropical trees of the genus Clusia. Trees 1: 238–247CrossRefGoogle Scholar
  106. Queiroz O, Brulfert J (1982) Photoperiod-controlled induction and enhancement of seasonal adaptation to drought. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 208–230Google Scholar
  107. Rauh W (1973) Über die Zonierung und Differenzierung der Vegetation Madagaskars. Akademie der Wissenschaften und der Literatur, MainzGoogle Scholar
  108. Robinson SA, Osmond CB (1994) Internal gradients of chlorophyll and carotenoid pigments in relation to photoprotection in thick leaves of plants with crassulacean acid metabolism. Aust J Plant Physiol 21: 497–506CrossRefGoogle Scholar
  109. Robinson SA, Yakir D, Ribas-Carbo M, Giles L, Osmond CB, Siedow JN, Berry JA (1992) Measurements of the engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoë daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol 100: 1087–1091PubMedCrossRefGoogle Scholar
  110. Robinson SA, Ribas-Carbo M, Yakir D, Giles L, Reuveni Y, Berry JA (1995) Beyond SHAM and cyanide: opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination. Aust J Plant Physiol 22: 487–496CrossRefGoogle Scholar
  111. Rustin P, Queiroz-Claret C (1985) Changes in the oxidative properties of Kalanchoë blossfeldiana leaf mitochondria during development of crassulacean acid metabolism. Planta 164: 415–422CrossRefGoogle Scholar
  112. Saitou K, Agata W, Masui Y, Asakura M, Kubota F (1994) Isoforms of NADP-malic enzyme from Mesembryanthemum crystallinum L. that are involved in C3 photosynthesis and crassulacean acid metabolism. Plant Cell Physiol 35: 1165–1171Google Scholar
  113. Schmitt JM (1990) Rapid concentration changes of phosphoenolpyruvate carboxylase mRNA in detached leaves of Mesembryanthemum crystallinum L. in response to wilting and rehydration. Plant Cell Environ 13: 845–850CrossRefGoogle Scholar
  114. Scott P, Bettey M, Donath LN, Kruger NJ (1995) Effects of elevated fructose 2, 6-bisphosphate levels on metabolism in transgenic potato tubers, (submitted)Google Scholar
  115. Sharp RE, Matthews MA, Boyer JS (1984) Kok effect and the quantum yield of photosynthesis. Plant Physiol 75: 95–101PubMedCrossRefGoogle Scholar
  116. Sideris CP, Young NY, Chun HHQ (1948) Diurnal changes and growth rates as associated with ascorbic acid, titratable acidity, carbohydrate and nitrogenous fraction in the leaves of Ananas comosus (L.). Merr. Plant Physiol 23: 38–69PubMedCrossRefGoogle Scholar
  117. Siedow JN (1995) Bioenergetics: the mitochondrial electron transport chain. In: Levings CS, Vasil I (eds) The molecular biology of plant mitochondria. Kluwer, Dordrecht, pp 281–312CrossRefGoogle Scholar
  118. Slocombe SP, Whitelam GC, Cockburn W (1993) Investigation of phosphoenolpyruvate carboxylase (PEPCase) in Mesembryanthemum crystallinum L. in C3 and CAM photosynthetic states. Plant Cell Environ 16: 403–411CrossRefGoogle Scholar
  119. Smith JAC (1989) Epiphytic bromeliads. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 109–138Google Scholar
  120. Smith JAC, Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 141–167Google Scholar
  121. Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  122. Sugiyama T, Laetsch WM (1975) Occurrence of pyruvate orthophosphate dikjnase in the succulent plant, Kalanchoë daigremontiana Hamet. et. Perr. Plant Physiol 56: 605–607PubMedCrossRefGoogle Scholar
  123. Szarek SR, Ting IP (1974) Seasonal patterns of acid metabolism and gas exchange in Opuntia basilaris. Plant Physiol 54: 76–81PubMedCrossRefGoogle Scholar
  124. Szarek SR, Johnson HB, Ting IP (1973) Drought adaptation in Opuntia basilaris. Plant Physiol 52: 539–541PubMedCrossRefGoogle Scholar
  125. Taiz L, Zeiger E (1991) Plant physiology. Benjamin/Cummings, Redwood CityGoogle Scholar
  126. Teeri J (1982) Photosynthetic variation in the Crassulaceae. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 244–259Google Scholar
  127. Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress-responses. Abscisic acid, cytokinin, and the effects of NaCl. Plant Physiol 100: 416–423PubMedCrossRefGoogle Scholar
  128. Tidwell WD, Parker LR (1990) Protoyucca shadishii gen. et sp. nov., an arborescent monocotyledon with secondary growth from the Middle Miocene of northwestern Nevada, U.S.A. Rev Palaeobot Palynol 62: 79–95CrossRefGoogle Scholar
  129. Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36: 595–622CrossRefGoogle Scholar
  130. Ting IP, Hanscom Z (1977) Induction of acid metabolism in Portulacaria afra. Plant Physiol 59: 511–514PubMedCrossRefGoogle Scholar
  131. Ting IP, Patel A, Sipes DL, Reid PD, Walling LL (1994) Differential expression of photosynthesis genes in leaf tissue layers of Peperomia as revealed by tissue printing. Am J Bot 81: 414–422CrossRefGoogle Scholar
  132. Toh H, Kawamura T, Izui K (1994) Molecular evolution of phosphoenolpyruvate carboxylase. Plant Cell Environ 17: 31–43CrossRefGoogle Scholar
  133. Treichel S (1975) Crassulaceensäurestoffwechsel bei einem salztoleranten Vertreter der Aizoaceae: Aptenia cordifolia. Plant Sci Lett 4: 141–144CrossRefGoogle Scholar
  134. Troughton JA, Wells PV, Mooney HA (1974) Photosynthetic mechanisms in ancient C4 and CAM plants. Carnegie Inst Washington Year Book 73: 812–816Google Scholar
  135. Umbach AL, Wiskich JT, Siedow JN (1994) Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in soybean seedling mitochondria. FEBS Lett 348: 181–184PubMedCrossRefGoogle Scholar
  136. Vernon DM, Ostrem JA, Schmitt JM, Bohnert HJ (1988) PEPCase transcript levels in Mesembryanthemum crystallinum decline rapidly upon relief from salt sress. Plant Physiol 86: 1002–1004PubMedCrossRefGoogle Scholar
  137. Vernon DM, Ostrem JA, Bohnert HJ (1993) Stress perception and response in a facultative halophyte: the regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ 16: 437–444CrossRefGoogle Scholar
  138. Villar R, Held AA, Merino J (1994) Comparison of methods to estimate dark respiration in the light in leaves of two woody species. Plant Physiol 105: 167–172PubMedGoogle Scholar
  139. von Willert DJ, Treichel S, Kirst GO, Curdts E (1976) Environmentally controlled changes of phosphoenolpyruvate carboxylase in Mesembryanthemum. Phytochemistry 15: 1435–1436CrossRefGoogle Scholar
  140. Winter K (1974a) NaCl-induzierter Crassulaceen-Säurestoffwechsel bei der Salzpflanze Mesembryanthemum crystallinum. Oecologia 15: 383–392CrossRefGoogle Scholar
  141. Winter K (1974b) CO2-Gaswechsel von an hohe Salinität adaptiertem Mesembryanthemum crystallinum bei Rückführung in glykisches Anzuchtmedium. Ber Dtsch Bot Ges 86: 467–476Google Scholar
  142. Winter K (1980) Carbon dioxide and water vapor exchange in the crassulacean acid metabolism plant Kalanchoë pinnata during a prolonged light period. Plant Physiol 66: 917–921PubMedCrossRefGoogle Scholar
  143. Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95: 768–776PubMedCrossRefGoogle Scholar
  144. Winter K, Engelbrecht B (1994) Short-term CO2 responses of light and dark CO2 fixation in the crassulacean acid metabolism plant Kalanchoë pinnata. J Plant Physiol 144: 462–467Google Scholar
  145. Winter K. Lüttge U (1976) Balance between C3 and CAM pathway of photosynthesis. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 323–334CrossRefGoogle Scholar
  146. Winter K, Troughton JH (1978) Carbon assimilation pathways in Mesembryanthemum nodiflorum L. under natural conditions. Z Pflanzenphysiol 88: 153–162Google Scholar
  147. Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia 34: 225–237CrossRefGoogle Scholar
  148. Winter K, Foster JG, Edwards GE, Holtum JAM (1982) Intracellular localization of enzymes of carbon metabolism in Mesembryanthemum crystallinum exhibiting C3 photosynthetic characteristics or performing crassulacean acid metabolism. Plant Physiol 69: 300–307PubMedCrossRefGoogle Scholar
  149. Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141CrossRefGoogle Scholar
  150. Winter K, Osmond CB, Hubick KT (1986a) Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia. Oecologia 68: 224–230CrossRefGoogle Scholar
  151. Winter K, Schröppel-Meier G, Caldwell MM (1986b) Respiratory CO2 as carbon source for nocturnal acid synthesis at high temperatures in three species exhibiting crassulacean acid metabolism. Plant Physiol 81: 390–394PubMedCrossRefGoogle Scholar
  152. Winter K, Zotz G, Baur B, Dietz KJ (1992) Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia 91: 47–51CrossRefGoogle Scholar
  153. Zotz G, Winter K (1993a) Short-term regulation of CAM activity in a tropical hemiepiphyte, Clusia uvitana. Plant Physiol 102: 835–841PubMedGoogle Scholar
  154. Zotz G, Winter K (1993b) Short-term photosynthesis measurements predict leaf carbon balance in tropical rain-forest canopy plants. Planta 191: 409–412CrossRefGoogle Scholar
  155. Zotz G, Winter K (1994a) Annual carbon balance and nitrogen-use efficiency in tropical C3 and CAM epiphytes. New Phytol 126: 481–492CrossRefGoogle Scholar
  156. Zotz G, Winter K (1994b) A one-year study on carbon, water and nutrient relationships in a tropical C3 hemi-epiphyte, Clusia uvitana Pittier. New Phytol 127: 45–60CrossRefGoogle Scholar
  157. Zotz G, Winter K (1994c) Predicting annual carbon balance from leaf nitrogen. Naturwissenschaften 81: 449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • K. Winter
    • 1
  • J. A. C. Smith
    • 2
  1. 1.Smithsonian Tropical Research InstituteBalboaRepublic of Panama
  2. 2.Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations