Skip to main content

Crassulacean Acid Metabolism: Current Status and Perspectives

  • Chapter
Crassulacean Acid Metabolism

Part of the book series: Ecological Studies ((ECOLSTUD,volume 114))

Abstract

In this concluding chapter, we review some of the major findings discussed in this book and their implications for our understanding of the CAM pathway. In particular, we highlight areas of uncertainty as well as consensus and refer to a number of recent findings not covered in the individual chapters. We shall focus on the biochemistry and energetics of the CAM pathway, the developmental and environmental control of its expression in different species, factors determining the growth and productivity of CAM plants in the field, and finally its possible evolutionary origins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams WW, Nishida K, Osmond CB (1986) Quantum yields of CAM plants measured by photosynthetic O2 exchange. Plant Physiol 81: 297–300

    Article  PubMed  CAS  Google Scholar 

  • ap Rees T (1985) The organization of glycolysis and the oxidative pentose phosphate pathway in plants. In: Douce R, Day DA (eds) Encyclopedia of plant physiology. New Series, vol 18. Higher plant cell respiration. Springer, Berlin Heidelberg New York, pp 391–417

    Google Scholar 

  • ap Rees T (1990) Carbon metabolism in mitochondria. In: Dennis DT, Turpin DH (eds) Plant physiology, biochemistry and molecular biology. Longman, Harlow, pp 106–123

    Google Scholar 

  • Arron GP, Spalding MH, Edwards GE (1979) Isolation and oxidative properties of intact mitochondria from the leaves of Sedum praealtum. A crassulacean acid metabolism plant. Plant Physiol 64: 182–186

    Article  PubMed  CAS  Google Scholar 

  • Axelrod DI, Raven PH (1978) Late Cretaceous and Tertiary vegetation history of Africa. In: Werger MJA (ed) Biogeography and ecology of southern Africa. Junk, The Hague, pp 77–130

    Google Scholar 

  • Ball E, Hann J, Kluge M, Lee HSJ, Lüttge U, Orthen B, Popp M, Schmitt A, Ting IP (1991) Ecophysiological comportment of the tropical CAM-tree Clusia in the field. II. Modes of photosynthesis in trees and seedlings. New Phytol 117: 483–491

    Article  CAS  Google Scholar 

  • Barthlott W, Hunt WR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants II. Flowering plants: dicotyledons; magnoliid, hamamelid and caryophyllid families. Springer, Berlin Heidelberg New York, pp 161–197

    Google Scholar 

  • Baur B, Fischer K, Winter K, Dietz KJ (1994) cDNA sequence of a protein kinase from the halophyte Mesembryanthemum crystallinum L., encoding a SNF-1 homologue. Plant Physiol 106: 1225–1226

    Article  PubMed  CAS  Google Scholar 

  • Baur B, Fischer K, Winter K, Dietz KJ (1995) Molecular cloning of a protein kinase preferentially expressed upon induction of crassulacean acid metabolism in the facultative CAM plant Mesembryanthemum crystallinum L. (submitted)

    Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504

    Article  Google Scholar 

  • Black CC, Carnal NW, Kenyon WH (1982) Compartmentation and the regulation of CAM. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 51–68

    Google Scholar 

  • Bloom AJ, Troughton JH (1979) High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38: 35–43

    Article  Google Scholar 

  • Bock W (1962) A study of fossil Isoetes. J Paleontol 36: 53–59

    Google Scholar 

  • Borland AM, Griffiths H, Broadmeadow MSJ, Fordham MC, Maxwell C (1994) Carbonisotope composition of biochemical fractions and the regulation of carbon balance in leaves of the C3-crassulacean acid metabolism intermediate Clusia minor L. growing in Trinidad. Plant Physiol 106: 493–501

    PubMed  CAS  Google Scholar 

  • Borland AM, Griffiths H, Maxwell C, Fordham MC, Broadmeadow MSJ (1995) CAM induction in Clusia minor L. during the transition from wet to dry season in Trinidad: the role of organic acid speciation and decarboxylation. (submitted)

    Google Scholar 

  • Bremberger C, Haschke H-P, Lüttge U (1988) Separation and purification of the tonoplast ATPase and pyrophosphatase from plants with constitutive and inducible crassulacean acid metabolism. Planta 175: 465–470

    Article  CAS  Google Scholar 

  • Brulfert J, Vidal J, Keryer E, Thomas M, Gadal P, Queiroz O (1985) Phytochrome control of phosphoenolpyruvate carboxylase synthesis and specific RNA level during photo-periodic induction in a CAM plant. Physiol Vég 23: 921–928

    CAS  Google Scholar 

  • Brulfert J, Kluge M, Güçlü S, Queiroz O (1988) Interaction of photoperiod and drought as CAM inducing factors in Kalanchoë blossfeldiana Poelln., cv. Tom Thumb. J Plant Physiol 133: 222–227

    CAS  Google Scholar 

  • Brulfert J, Güçlü S, Taybi T, Pierre JN (1993) Enzymatic responses to water stress in detached leaves of the CAM plant Kalanchoë blossfeldiana Poelln. Plant Physiol Biochem 31: 491–497

    CAS  Google Scholar 

  • Bryce JH, Hill SA (1993) Energy production in plant cells. In: Lea PJ, Leegood RC (eds) Plant biochemistry and molecular biology. Wiley, Chichester, pp 1–26

    Google Scholar 

  • Carnal NW, Black CC (1989) Soluble sugars as carbohydrate reserve for CAM in pineapple leaves. Plant Physiol 90: 91–100

    Article  PubMed  CAS  Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG, and 39 others (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80: 528–580

    Article  Google Scholar 

  • Collinson ME (1991) Diversification of modern heterosporous pteridophytes. In: Blackmore S, Barnes SH (eds) Pollen and spores. Clarendon Press, Oxford, pp 119–150

    Google Scholar 

  • Conti S, Smirnoff N (1994) Rapid triggering of malate accumulation in the C3/CAM intermediate plant Sedum telephium: relationship with water status and phosphoenolpyruvate carboxylase. J Exp Bot 45: 1613–1621

    Article  CAS  Google Scholar 

  • Coté FX, André M, Folliot M, Massimino D, Daguenet A (1989) CO2 and O2 exchanges in the CAM plant Ananas comosus (L.) Merr. Plant Physiol 89: 61–68

    Article  PubMed  Google Scholar 

  • Crane PR, Lidgard S (1989) Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374: 27–33

    Article  CAS  Google Scholar 

  • Cui M, Nobel PS (1994) Gas exchange and growth responses to elevated CO2 and light levels in the CAM species Opuntia ficus-indica. Plant Cell Environ 17: 935–944

    Article  CAS  Google Scholar 

  • Cui M, Miller PM, Nobel PS (1993) CO2 exchange and growth of the crassulacean acid metabolism plant Opuntia ficus-indica under elevated CO2 in open-top chambers. Plant Physiol 103: 519–524

    PubMed  CAS  Google Scholar 

  • Day DA (1980) Malate decarboxylation by Kalanchoë daigremontiana mitochondria and its role in crassulacean acid metabolism. Plant Physiol 65: 675–679

    Article  PubMed  CAS  Google Scholar 

  • DeRocher EJ, Bohnert HJ (1993) Developmental and environmental stress employ different mechanisms in the expression of a plant gene family. Plant Cell 5: 1611–1625

    Article  PubMed  CAS  Google Scholar 

  • Duff SMG, Chollet R (1995) In vivo regulation of wheat-leaf phosphoenolpyruvate carboxylase by reversible phosphorylation. Plant Physiol 107: 775–782

    PubMed  CAS  Google Scholar 

  • Edwards GE, Foster JG, Winter K (1982) Activity and intracellular compartmentation of enzymes of carbon metabolism in CAM plants. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 92–111

    Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59: 86–90

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24: 411–439

    Article  Google Scholar 

  • Ehleringer J, Pearcy RW (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol 73: 555–559

    Article  PubMed  CAS  Google Scholar 

  • Fahrendorf T, Holtum JAM, Mukherjee U, Latzko E (1987) Fructose 2, 6-bisphos- phate, carbohydrate partitioning, and crassulacean acid metabolism. Plant Physiol 84: 182–187

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Ning L, Daley LS, Moreno Y, Azarenko A, Criddle RS (1994) Theoretical fitting of energetics of CAM path to calorimetric data. Plant Physiol Biochem 32: 591–598

    CAS  Google Scholar 

  • Franco AC, Ball E, Lüttge U (1992) Differential effects of drought and light levels on accumulation of citric and malic acids during CAM in Clusia. Plant Cell Environ 15: 821–829

    Article  CAS  Google Scholar 

  • Gardeström P, Edwards GE (1985) Leaf mitochondria (C3 + C4 + CAM). In: Douce R, Day DA (eds) Encyclopedia of plant physiology, New Series, vol 18, Higher plant cell respiration. Springer, Berlin Heidelberg New York, pp 314–346

    Google Scholar 

  • Gemel J, Randall DD (1992) Light regulation of leaf mitochondrial pyruvate dehydrogenase complex. Role of photorespiratory carbon metabolism. Plant Physiol 100: 908–914

    Article  PubMed  CAS  Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Google Scholar 

  • Griffiths H (1988) Crassulacean acid metabolism: a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15: 43–92

    Article  CAS  Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentration mechanisms and the evolution of CAM in vascular ephiphytes. In: Lüttge U (ed) Vascular plants as epiphytes. Springer, Berlin Heidelberg New York, pp 42–86

    Chapter  Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15: 1051–1062

    Article  CAS  Google Scholar 

  • Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60: 176–184

    Article  Google Scholar 

  • Griffiths H, Ong BL, Avadhani PN, Goh CJ (1989) Recycling of respiratory CO2 during crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. Planta 179: 115–122

    Article  CAS  Google Scholar 

  • Groenhof AC, Smirnoff N, Bryant JA (1990) The appearance of a new molecular species of phosphoerco/pyruvate carboxylase (PEPC) and the rapid induction of CAM in Sedum telephium L. Plant Cell Environ 13: 437–446

    Article  CAS  Google Scholar 

  • Guralnick LJ, Ting IP (1988) Seasonal patterns of water relations and enzyme activity of the facultative CAM plant Portulacaria afra (L.) Jacq. Plant Cell Environ 11: 811–818

    Article  CAS  Google Scholar 

  • Haag-Kerwer A, Franco AC, Liittge U (1992) The effect of temperature and light on the gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. J Exp Bot 43: 345–352

    Article  CAS  Google Scholar 

  • Hajirezaei M, Sonnewald U, Viola R, Carlisle S, Dennis D, Stitt M (1994) Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192: 16–30

    CAS  Google Scholar 

  • Hanning I, Heldt HW (1993) On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves. Partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products. Plant Physiol 103: 1147–1154

    PubMed  CAS  Google Scholar 

  • Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100: 1621–1626

    Article  PubMed  CAS  Google Scholar 

  • Hermans J, Westhoff P (1990) Analysis of expression and evolutionary relationships of phosphoenolpyruvate carboxylase genes in Flaveria trinerva (C4) and F. pringlei (C3). Mol Gen Genet 224: 459–468

    Article  PubMed  CAS  Google Scholar 

  • Hinkle PC, Kumar MA, Resetar A, Harris DL (1991) Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Biochemistry 30: 3576–3582

    Article  PubMed  CAS  Google Scholar 

  • Holtum JAM, Osmond CB (1981) The gluconeogenic metabolism of pyruvate during deacidification in plants with crassulacean acid metabolism. Aust J Plant Physiol 8: 31–44

    Article  CAS  Google Scholar 

  • Holtum JAM, Winter K (1982) Activity of enzymes of carbon metabolism during the induction of crassulacean acid metabolism in Mesembryanthemum crystallinum L. Planta 155: 8–16

    Article  CAS  Google Scholar 

  • Ihlenfeldt HD (1994) Diversification in an arid world: the Mesembryanthemaceae. Annu Rev Ecol Syst 25: 521–546

    Article  Google Scholar 

  • Ingram J, Smith JAC (1995) Developmental regulation of NAD+- and NADP+- malic enzyme activities in the CAM plant Kalanchoë daigremontiana. (submitted)

    Google Scholar 

  • Israel AA, Nobel PS (1994) Activities of carboxylating enzymes in the CAM species Opuntia ficus-indica grown under current and elevated CO2 concentrations. Photosyn Res 40: 223–229

    Article  CAS  Google Scholar 

  • Jiao J, Chollet R (1991) Posttranslational regulation of phosphoenolpyruvate carboxylases in C4 and crassulacean acid metabolism plants. Plant Physiol 95: 981–985

    Article  PubMed  CAS  Google Scholar 

  • Kalt W, Osmond CB, Siedow JN (1990) Malate metabolism in the dark after 13CO2 fixation in the crassulacean plant Kalanchoë tubiflora. Plant Physiol 94: 826–832

    Article  PubMed  CAS  Google Scholar 

  • Lambers H (1990) Oxidation of mitochondrial NADH and the synthesis of ATP. In: Dennis DT, Turpin DH (eds) Plant Physiology, biochemistry and molecular biology. Longman, Harlow, pp 124–143

    Google Scholar 

  • Lance C, Chauveau M, Dizengremel P (1985) The cyanide-resistant pathway of plant mitochondria. In: Douce R, Day DA (eds) Encyclopedia of plant physiology, New Series, vol 18. Higher plant cell respiration. Springer, Berlin Heidelberg New York, pp 202–247

    Google Scholar 

  • Lepiniec L, Vidal J, Chollet R, Gadal P, Cretin C (1994) Phosphoenolpyruvate carboxylase: structure, regulation and evolution. Plant Sci 99: 111–124

    Article  CAS  Google Scholar 

  • Li B, Chollet R (1994) Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch Biochem Biophys 314: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (1988) Day-night changes of citric acid levels in CAM: phenomenon and ecophysiological significance. Plant Cell Environ 11: 445–451

    Article  Google Scholar 

  • Lüttge U, Ball E (1987) Dark respiration of CAM plants. Plant Physiol Biochem 25: 3–10

    Google Scholar 

  • Lüttge U, Smith JAC (1988) CAM plants. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman, Harlow, pp 417–452

    Google Scholar 

  • Lüttge U, Smith JAC, Marigo G, Osmond CB (1981) Energetics of malate accumulation in the vacuole of Kalanchoë tubiflora cells. FEBS Lett 126: 81–84

    Article  Google Scholar 

  • Luo Y, Nobel PS (1993) Growth characteristics of newly initiated cladodes of Opuntia ficus-indica as affected by shading, drought and elevated CO2. Physiol Plant 87: 467–474

    Article  CAS  Google Scholar 

  • Mägdefrau K (1968) Paläobiologie der Pflanzen. Fischer, Jena

    Google Scholar 

  • Martin CE, Christensen NL, Strain BR (1981) Seasonal patterns of growth, tissue acid fluctuations, and 14CO2 uptake in the crassulacean acid metabolism epiphyte Tillandsia usneoides L. (Spanish moss). Oecologia 49: 322–328

    Article  Google Scholar 

  • Maxwell C, Griffiths H, Young AJ (1994) Photosynthetic acclimation to light regime and water stress by the C3-CAM epiphyte Guzmania monostachia: gas-exchange characteristics, photochemical efficiency and the xanthophyll cycle. Func Ecol 8: 746–754

    Article  Google Scholar 

  • Medina E (1974) Dark CO2 fixation, habitat preference and evolution within the Bro- meliaceae. Evolution 28: 677–686

    Article  Google Scholar 

  • Medina E (1982) Temperature and humidity effects on dark CO2 fixation by Kalanchoë pinnata. Z Pflanzenphysiol 107: 251–258

    CAS  Google Scholar 

  • Medina E (1984) On the temperature dependence of dark CO2 fixation in CAM plants: acidity, growth and δ 13C values. In: Medina E (ed) Physiological ecology of CAM plants. CIET (Unesco-IVIC), Caracas, pp 52–72

    Google Scholar 

  • Medina E, Osmond CB (1981) Temperature dependence of dark CO2 fixation and acid accumulation in Kalanchoë daigremontiana. Aust J Plant Physiol 8: 641–649

    CAS  Google Scholar 

  • Medina E, Olivares E, Diaz M (1986) Water stress and light intensity effects on growth and nocturnal acid accumulation in a terrestrial CAM bromeliad (Bromelia humilis Jacq.) under natural conditions. Oecologia 70: 441–446

    Article  Google Scholar 

  • Medina E, Lüttge U, Leal F, Ziegler H (1994a) Carbon and hydrogen isotope ratios in bromeliads growing under different light environments in natural conditions. Bot Acta 104: 47–52

    Google Scholar 

  • Medina E, Ziegler H, Lüttge U, Trimborn P, Francisco M (1994b) Light conditions during growth as revealed by δ 13C values of leaves of primitive cultivars of Ananas comosus, an obligate CAM species. Func Ecol 8: 298–305

    Article  Google Scholar 

  • Milburn TR, Pearson DJ, Ndegwe NA (1968) Crassulacean acid metabolism under natural tropical conditions. New Phytol 67: 883–897

    Article  CAS  Google Scholar 

  • Millar AH, Wiskich JT, Whelan J, Day DA (1993) Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett 329: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Monson RK (1989) On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). Adv Ecol Res 19: 57–110

    Article  Google Scholar 

  • Moore AL, Siedow JN (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta 1059: 121–140

    Article  PubMed  CAS  Google Scholar 

  • Moore AL, Gemel J, Randall DD (1993) The regulation of pyruvate dehydrogenase activity in pea leaf mitochondria. Plant Physiol 103: 1431–1435

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  • Nobel PS (1991) Environmental productivity indices and productivity for Opuntia ficus-indica under current and elevated atmospheric CO2 levels. Plant Cell Environ 14: 637–646

    Article  Google Scholar 

  • Nobel PS (1994) Remarkable agaves and cacti. Oxford University Press, New York

    Google Scholar 

  • Nobel PS, Hartsock TL (1983) Relationships between photosynthetically active radiation, nocturnal acid accumulation, and CO2 uptake for a crassulacean acid metabolism plant, Opuntia ficus-indica. Plant Physiol 71: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS, Hartsock TL (1986) Short-term and long-term responses of crassulacean acid metabolism plants to elevated CO2. Plant Physiol 82: 604–606

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS, Israel AA (1994) Cladode development, environmental responses of CO2 uptake, and productivity for Opuntia ficus-indica under elevated CO2. J Exp Bot 45: 295–303

    Article  Google Scholar 

  • Nobel PS, Garcia-Moya E, Quero E (1992) High annual productivity of certain agaves and cacti under cultivation. Plant Cell Environ 15: 329–335

    Article  Google Scholar 

  • Nobel PS, Cui M, Israel AA (1994a) Light, chlorophyll, carboxylase activity and CO2 fixation at various depths in the chlorenchyma of Opuntia ficus-indica (L.) Miller under current and elevated CO2. New Phytol 128: 315–322

    Article  CAS  Google Scholar 

  • Nobel PS, Cui M, Miller PM, Luo Y (1994b) Influences of soil volume and an elevated CO2 level on growth and CO2 exchange for the crassulacean acid metabolism plant Opuntia ficus-indica. Physiol Plant 90: 173–180

    Article  CAS  Google Scholar 

  • Olivares E, Faist K, Kluge M, Lüttge U (1993) 14CO9 pulse-chase labelling in Clusia minor L. J Exp Bot 44: 1527–1533

    Article  CAS  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414

    Article  CAS  Google Scholar 

  • Osmond CB (1982) Carbon cycling and stability of the photosynthetic apparatus in CAM. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 112–127

    Google Scholar 

  • Osmond CB, Nott DL, Firth PM (1979) Carbon assimilation patterns and growth of the introduced CAM plant Opuntia inermis in eastern Australia. Oecologia 40: 331–350

    Article  Google Scholar 

  • Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology. New Series, vol 12B. Springer, Berlin Heidelberg New York, pp 479–547

    Chapter  Google Scholar 

  • Osmond CB, Holtum JAM, O’Leary MH, Roeske C, Wong OC, Summons RE, Avadhani PNC (1988) Regulation of malic-acid metabolism in crassulacean-acid-metabolism plants in the dark and light: in-vivo evidence from 13C-labelling patterns after 13CO2 fixation. Planta 175: 184–192

    Article  CAS  Google Scholar 

  • Osmond CB, Adams WW, Smith SD (1989) Crassulacean acid metabolism. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant physiological ecology. Chapman and Hall, London, pp 255–280

    Chapter  Google Scholar 

  • Pfitsch WA, Smith AP (1988) Growth and photosynthesis of Aechmea magdalenae, a terrestrial CAM plant in a tropical moist forest, Panama. J Trop Ecol 4: 199–207

    Article  Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105: 77–97

    Article  Google Scholar 

  • Popp M, Kramer D, Lee H, Diaz M, Ziegler H, Lüttge U (1987) Crassulacean acid metabolism in tropical trees of the genus Clusia. Trees 1: 238–247

    Article  CAS  Google Scholar 

  • Queiroz O, Brulfert J (1982) Photoperiod-controlled induction and enhancement of seasonal adaptation to drought. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 208–230

    Google Scholar 

  • Rauh W (1973) Ãœber die Zonierung und Differenzierung der Vegetation Madagaskars. Akademie der Wissenschaften und der Literatur, Mainz

    Google Scholar 

  • Robinson SA, Osmond CB (1994) Internal gradients of chlorophyll and carotenoid pigments in relation to photoprotection in thick leaves of plants with crassulacean acid metabolism. Aust J Plant Physiol 21: 497–506

    Article  CAS  Google Scholar 

  • Robinson SA, Yakir D, Ribas-Carbo M, Giles L, Osmond CB, Siedow JN, Berry JA (1992) Measurements of the engagement of cyanide-resistant respiration in the crassulacean acid metabolism plant Kalanchoë daigremontiana with the use of on-line oxygen isotope discrimination. Plant Physiol 100: 1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Robinson SA, Ribas-Carbo M, Yakir D, Giles L, Reuveni Y, Berry JA (1995) Beyond SHAM and cyanide: opportunities for studying the alternative oxidase in plant respiration using oxygen isotope discrimination. Aust J Plant Physiol 22: 487–496

    Article  CAS  Google Scholar 

  • Rustin P, Queiroz-Claret C (1985) Changes in the oxidative properties of Kalanchoë blossfeldiana leaf mitochondria during development of crassulacean acid metabolism. Planta 164: 415–422

    Article  CAS  Google Scholar 

  • Saitou K, Agata W, Masui Y, Asakura M, Kubota F (1994) Isoforms of NADP-malic enzyme from Mesembryanthemum crystallinum L. that are involved in C3 photosynthesis and crassulacean acid metabolism. Plant Cell Physiol 35: 1165–1171

    CAS  Google Scholar 

  • Schmitt JM (1990) Rapid concentration changes of phosphoenolpyruvate carboxylase mRNA in detached leaves of Mesembryanthemum crystallinum L. in response to wilting and rehydration. Plant Cell Environ 13: 845–850

    Article  CAS  Google Scholar 

  • Scott P, Bettey M, Donath LN, Kruger NJ (1995) Effects of elevated fructose 2, 6-bisphosphate levels on metabolism in transgenic potato tubers, (submitted)

    Google Scholar 

  • Sharp RE, Matthews MA, Boyer JS (1984) Kok effect and the quantum yield of photosynthesis. Plant Physiol 75: 95–101

    Article  PubMed  CAS  Google Scholar 

  • Sideris CP, Young NY, Chun HHQ (1948) Diurnal changes and growth rates as associated with ascorbic acid, titratable acidity, carbohydrate and nitrogenous fraction in the leaves of Ananas comosus (L.). Merr. Plant Physiol 23: 38–69

    Article  PubMed  CAS  Google Scholar 

  • Siedow JN (1995) Bioenergetics: the mitochondrial electron transport chain. In: Levings CS, Vasil I (eds) The molecular biology of plant mitochondria. Kluwer, Dordrecht, pp 281–312

    Chapter  Google Scholar 

  • Slocombe SP, Whitelam GC, Cockburn W (1993) Investigation of phosphoenolpyruvate carboxylase (PEPCase) in Mesembryanthemum crystallinum L. in C3 and CAM photosynthetic states. Plant Cell Environ 16: 403–411

    Article  CAS  Google Scholar 

  • Smith JAC (1989) Epiphytic bromeliads. In: Lüttge U (ed) Vascular plants as epiphytes. Evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 109–138

    Google Scholar 

  • Smith JAC, Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 141–167

    Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Sugiyama T, Laetsch WM (1975) Occurrence of pyruvate orthophosphate dikjnase in the succulent plant, Kalanchoë daigremontiana Hamet. et. Perr. Plant Physiol 56: 605–607

    Article  PubMed  CAS  Google Scholar 

  • Szarek SR, Ting IP (1974) Seasonal patterns of acid metabolism and gas exchange in Opuntia basilaris. Plant Physiol 54: 76–81

    Article  PubMed  CAS  Google Scholar 

  • Szarek SR, Johnson HB, Ting IP (1973) Drought adaptation in Opuntia basilaris. Plant Physiol 52: 539–541

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. Benjamin/Cummings, Redwood City

    Google Scholar 

  • Teeri J (1982) Photosynthetic variation in the Crassulaceae. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 244–259

    Google Scholar 

  • Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress-responses. Abscisic acid, cytokinin, and the effects of NaCl. Plant Physiol 100: 416–423

    Article  PubMed  CAS  Google Scholar 

  • Tidwell WD, Parker LR (1990) Protoyucca shadishii gen. et sp. nov., an arborescent monocotyledon with secondary growth from the Middle Miocene of northwestern Nevada, U.S.A. Rev Palaeobot Palynol 62: 79–95

    Article  Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36: 595–622

    Article  CAS  Google Scholar 

  • Ting IP, Hanscom Z (1977) Induction of acid metabolism in Portulacaria afra. Plant Physiol 59: 511–514

    Article  PubMed  CAS  Google Scholar 

  • Ting IP, Patel A, Sipes DL, Reid PD, Walling LL (1994) Differential expression of photosynthesis genes in leaf tissue layers of Peperomia as revealed by tissue printing. Am J Bot 81: 414–422

    Article  Google Scholar 

  • Toh H, Kawamura T, Izui K (1994) Molecular evolution of phosphoenolpyruvate carboxylase. Plant Cell Environ 17: 31–43

    Article  CAS  Google Scholar 

  • Treichel S (1975) Crassulaceensäurestoffwechsel bei einem salztoleranten Vertreter der Aizoaceae: Aptenia cordifolia. Plant Sci Lett 4: 141–144

    Article  CAS  Google Scholar 

  • Troughton JA, Wells PV, Mooney HA (1974) Photosynthetic mechanisms in ancient C4 and CAM plants. Carnegie Inst Washington Year Book 73: 812–816

    Google Scholar 

  • Umbach AL, Wiskich JT, Siedow JN (1994) Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in soybean seedling mitochondria. FEBS Lett 348: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Vernon DM, Ostrem JA, Schmitt JM, Bohnert HJ (1988) PEPCase transcript levels in Mesembryanthemum crystallinum decline rapidly upon relief from salt sress. Plant Physiol 86: 1002–1004

    Article  PubMed  CAS  Google Scholar 

  • Vernon DM, Ostrem JA, Bohnert HJ (1993) Stress perception and response in a facultative halophyte: the regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ 16: 437–444

    Article  CAS  Google Scholar 

  • Villar R, Held AA, Merino J (1994) Comparison of methods to estimate dark respiration in the light in leaves of two woody species. Plant Physiol 105: 167–172

    PubMed  CAS  Google Scholar 

  • von Willert DJ, Treichel S, Kirst GO, Curdts E (1976) Environmentally controlled changes of phosphoenolpyruvate carboxylase in Mesembryanthemum. Phytochemistry 15: 1435–1436

    Article  Google Scholar 

  • Winter K (1974a) NaCl-induzierter Crassulaceen-Säurestoffwechsel bei der Salzpflanze Mesembryanthemum crystallinum. Oecologia 15: 383–392

    Article  Google Scholar 

  • Winter K (1974b) CO2-Gaswechsel von an hohe Salinität adaptiertem Mesembryanthemum crystallinum bei Rückführung in glykisches Anzuchtmedium. Ber Dtsch Bot Ges 86: 467–476

    Google Scholar 

  • Winter K (1980) Carbon dioxide and water vapor exchange in the crassulacean acid metabolism plant Kalanchoë pinnata during a prolonged light period. Plant Physiol 66: 917–921

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the induction of crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95: 768–776

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Engelbrecht B (1994) Short-term CO2 responses of light and dark CO2 fixation in the crassulacean acid metabolism plant Kalanchoë pinnata. J Plant Physiol 144: 462–467

    CAS  Google Scholar 

  • Winter K. Lüttge U (1976) Balance between C3 and CAM pathway of photosynthesis. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 323–334

    Chapter  Google Scholar 

  • Winter K, Troughton JH (1978) Carbon assimilation pathways in Mesembryanthemum nodiflorum L. under natural conditions. Z Pflanzenphysiol 88: 153–162

    CAS  Google Scholar 

  • Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to crassulacean acid metabolism in Mesembryanthemum crystallinum growing in its natural environment. Oecologia 34: 225–237

    Article  Google Scholar 

  • Winter K, Foster JG, Edwards GE, Holtum JAM (1982) Intracellular localization of enzymes of carbon metabolism in Mesembryanthemum crystallinum exhibiting C3 photosynthetic characteristics or performing crassulacean acid metabolism. Plant Physiol 69: 300–307

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141

    Article  Google Scholar 

  • Winter K, Osmond CB, Hubick KT (1986a) Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia. Oecologia 68: 224–230

    Article  Google Scholar 

  • Winter K, Schröppel-Meier G, Caldwell MM (1986b) Respiratory CO2 as carbon source for nocturnal acid synthesis at high temperatures in three species exhibiting crassulacean acid metabolism. Plant Physiol 81: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Zotz G, Baur B, Dietz KJ (1992) Light and dark CO2 fixation in Clusia uvitana and the effects of plant water status and CO2 availability. Oecologia 91: 47–51

    Article  Google Scholar 

  • Zotz G, Winter K (1993a) Short-term regulation of CAM activity in a tropical hemiepiphyte, Clusia uvitana. Plant Physiol 102: 835–841

    PubMed  CAS  Google Scholar 

  • Zotz G, Winter K (1993b) Short-term photosynthesis measurements predict leaf carbon balance in tropical rain-forest canopy plants. Planta 191: 409–412

    Article  CAS  Google Scholar 

  • Zotz G, Winter K (1994a) Annual carbon balance and nitrogen-use efficiency in tropical C3 and CAM epiphytes. New Phytol 126: 481–492

    Article  CAS  Google Scholar 

  • Zotz G, Winter K (1994b) A one-year study on carbon, water and nutrient relationships in a tropical C3 hemi-epiphyte, Clusia uvitana Pittier. New Phytol 127: 45–60

    Article  CAS  Google Scholar 

  • Zotz G, Winter K (1994c) Predicting annual carbon balance from leaf nitrogen. Naturwissenschaften 81: 449

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winter, K., Smith, J.A.C. (1996). Crassulacean Acid Metabolism: Current Status and Perspectives. In: Winter, K., Smith, J.A.C. (eds) Crassulacean Acid Metabolism. Ecological Studies, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79060-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79060-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79062-1

  • Online ISBN: 978-3-642-79060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics