Skip to main content

The Evolution of Crassulacean Acid Metabolism

  • Chapter
Crassulacean Acid Metabolism

Part of the book series: Ecological Studies ((ECOLSTUD,volume 114))

Abstract

This paper takes a wide view of the evolution of CAM; in particular it addresses the question why CAM does what it does and why other CAM-like possibilities have not been used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altesor A, Ezcurra E, Silva C (1992) Changes in photosynthetic metabolism during the early ontogeny of four cactus species. Acta Oecol 13: 777–785

    Google Scholar 

  • Amthor JS (1991) Respiration in a future, high-CO2 world. Plant Cell Environ 14: 13–20

    Article  CAS  Google Scholar 

  • Ash SR, Pigg KB (1991) A new Jurassic Isoetites (Isoetales) from the Wallowa Terrane in Hells Canyon, Oregon and Idaho. Am J Bot 78: 1636–1646

    Article  Google Scholar 

  • Atay S (1958) Ãœber die Einwirkung der ätherischen Öle auf die Evaporation und Transpiration. Istanbul Univ Fen Fak Mecm Ser B 23: 143–170

    Google Scholar 

  • Atkinson DE (1992) Functional roles of urea synthesis in vertebrates. Physiol Zool 65: 243–267

    CAS  Google Scholar 

  • Audus LJ, Cheetham AN (1940) Investigations on the significance of ethereal oils in regulating leaf temperatures and transpiration rates. Ann Bot (New Ser) 4: 465–483

    Article  CAS  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160 000-year record of atmospheric CO2. Nature 329: 408–414

    Article  CAS  Google Scholar 

  • Behrensmeyer AK, Damuth JD, Di Michele WA, Potts R, Sues H-D, Wing SL (eds) (1992) Terrestrial ecosystems through time. University of Chicago Press, Chicago

    Google Scholar 

  • Benzing DH (1989) The evolution of epiphytism. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 15–41

    Google Scholar 

  • Berner RA (1990) Atmospheric carbon dioxide levels over phanerozoic time. Science 249: 1382–1386

    Article  PubMed  CAS  Google Scholar 

  • Berner RA (1993) Palaeozoic atmospheric CO2: importance of solar radiation and plant evolution. Science 249: 1382–1386

    Article  Google Scholar 

  • Berner RA, Canfield DE (1989) A new model for atmospheric oxygen over phanerozoic time. Am J Sci 289: 333–361

    Article  PubMed  CAS  Google Scholar 

  • Björkman O (1975) Thermal stability of the photosynthetic apparatus in intact leaves. Carnegie Inst Washington Year Book 74: 748–751

    Google Scholar 

  • Björkman O, Badger MR, Armond PA (1978) Thermal acclimation of photosynthesis: effect of temperature on photosynthetic characteristics of the photosynthetic apparatus in Nerium oleander. Carnegie Inst Washington Year Book 77: 262–282

    Google Scholar 

  • Bocherens H, Fizet N, Cuif JP, Jaeger J-J, Michard J-G, Mariotti A (1988) Premières mèsures d’abondances isotopiques naturelles en 13C et 15N de la matière organique fossile de Dinosaure. Application à l’étude du regimes alimentaire du genre Anatosaurus (Ornitischia, Hadrosauridae). C R Hebd Acad Sci, Paris, D Serie II 306: 1521–1525

    Google Scholar 

  • Bocherens H, Friis EM, Mariotti A, Pedersen KR (1993) Carbon isotope abundances in Mesozoic and Coenozoic fossil plants: palaeoecological implications. Lethaia 26: 347–358

    Article  Google Scholar 

  • Brandl R, Mann W, Sprinzl M (1992) Estimation of the monocot-dicot age through RNA sequences from the chloroplast. Proc R Soc Lond B 249: 13–17

    Article  Google Scholar 

  • Bremberger C, Lüttge U (1992) Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L. during the induction of crassulacean acid metabolism. Planta 188: 575–580

    Article  CAS  Google Scholar 

  • Callaghan TV, Sonesson M, Somme L (1992) Responses of terrestrial plants and invertebrates to environmental change at high latitudes. Philos Trans R Soc Lond B 338: 279–288

    Article  Google Scholar 

  • Carpita NC (1985) Tensile strength of cell wall of living cells. Plant Physiol 79: 485–488

    Article  PubMed  CAS  Google Scholar 

  • Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361: 344–345

    Article  Google Scholar 

  • Cockburn W (1981) The evolutionary relationship between stomatal mechanism, crassulacean acid metabolism and C4 photosynthesis. Plant Cell Environ 4: 417–418

    Article  CAS  Google Scholar 

  • Cockburn W (1985) Variation in photosynthetic metabolism in vascular plants: CAM and related phenomena. New Phytol 101: 3–24

    Article  CAS  Google Scholar 

  • Cockburn W, McAulay A (1975) The pathway of carbon dioxide fixation in crassulacean plants. Plant Physiol 55: 87–89

    Article  PubMed  CAS  Google Scholar 

  • Cockburn W, Ting IP, Sternberg LO (1979) Relationships between stomatal behavior and internal carbon dioxide concentration in crassulacean acid metabolism plants. Plant Physiol 63: 1029–1032

    Article  PubMed  CAS  Google Scholar 

  • Crane PR (1993) Time for the angiosperms. Nature 366: 631–632

    Article  Google Scholar 

  • Crane PR, Lidgard S (1990) Angiosperm radiation and patterns of Cretaceous palynological diversity. In: Taylor PD, Larwood GP (eds) Major evolutionary radiations. Clarendon, Oxford, pp 377–407

    Google Scholar 

  • Crane PR, Donoghue MJ, Doyle JA, Friis EM (1989) Angiosperm origins. Nature 342: 131–132

    Article  Google Scholar 

  • Cushman JC, Bohnert HJ (1989a) Nucleotide sequence of the Ppc2 gene encoding a housekeeping isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Nucleic Acids Res 17: 6743–6744

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (1989b) Nucleotide sequence of the gene encoding a CAM specific isoform of phosphoenolpyruvate carboxylase from Mesembryanthemum crystallinum. Nucleic Acids Res 17: 6745–6746

    Article  PubMed  CAS  Google Scholar 

  • Dennis DT, Turpin DH (eds) (1990) Plant physiology, biochemistry and molecular biology. Longman, Harlow

    Google Scholar 

  • Duarte CM (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37: 882–889

    Article  CAS  Google Scholar 

  • Edwards DI, Seldon PA (1992) The development of early terrestrial ecosystems. Bot J Scotland 46: 337–365

    Article  Google Scholar 

  • Edwards GE, Walker DA (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Blackwell, Oxford

    Google Scholar 

  • Elleman CJ, Entwhistle PF (1982) A study of glands on cotton responsible for the high pH and cation concentration on the leaf surface. Ann Appl Biol 100: 553–558

    Article  Google Scholar 

  • Evans JR, Seeman JR (1989) The allocation of protein nitrogen in the photosynthetic apparatus: costs, consequences and control. In: Briggs WR (ed) Photosynthesis. A R Liss, New York, pp 183–205

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40: 503–537

    Article  CAS  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fukuzawa H, Suzuki E, Komukai Y, Miyachi S (1992) A gene homologous to chloroplast carbonic anhydrase (icfA) is essential for photosynthetic carbon dioxide fixation by Synechococcus PCC 7942. Proc Natl Acad Sci USA 89: 4437–4441

    Article  PubMed  CAS  Google Scholar 

  • Gerwick BG, Williams GJ III (1978) Temperature and water regulation of gas exchange of Opuntia polyacantha. Oecologia 35: 149–159

    Article  Google Scholar 

  • Gibson AC (1982) The anatomy of succulence. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 1–17

    Google Scholar 

  • Gill AM, Groves RH, Nobel IR (eds) (1981) Fire and the Australian biota. The Australian Academy of Science, Canberra

    Google Scholar 

  • Gravatt DA, Martin CE (1992) Comparative ecophysiology of five species of Sedum (Crassulaceae) under well-watered and drought-stressed conditions. Oecologia 92: 532–541

    Article  Google Scholar 

  • Griffiths H (1988) Crassulacean acid metabolism: a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15: 43–92

    Article  CAS  Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Liittge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Springer, Berlin Heidelberg New York, pp 42–86

    Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15: 1051–1062

    Article  CAS  Google Scholar 

  • Hasebe M, Ito M, Kofuji R, Iwatsuki K, Veda K (1992) Phylogenetic relationships in Gnetophyta deduced from rbcL gene sequences. Bot Mag Tokyo 105: 385–391

    Article  CAS  Google Scholar 

  • Heilbronn A (1958) Ãœber die Oberflächen-Aktivität ätherischer Öle und die biologische Bedeutung dieses Phänomens. Istanbul Univ Fen Fak Mecm Ser B 23: 131–141

    Google Scholar 

  • Holtum JAM, Summons R, Roeske CA, Comins N, O’Leary MH (1984) Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism. A new approach to estimating in vivo carbonic anhydrase activity. J Biol Chem 259: 6870–6881

    PubMed  CAS  Google Scholar 

  • Jane JW, Urbauer JL, O’Leary MH, Cleland WW (1992) Mechanistic studies of phosphoenolpyruvate carboxylase from Zea mays with (Z)- and (E)-3-fluoro-phosphoenol-pyruvate as substrate. Biochemistry 31: 6432–6440

    Article  Google Scholar 

  • Johnston AM, Rave JA (1986) Dark fixation studies on the intertidal macroalga Ascophyllum nodosum (Phaeophyta). J Phycol 22: 78–83

    Article  CAS  Google Scholar 

  • Johnston AM, Raven JA (1989) Extraction, partial purification and characterization of phosphoenolpyruvate carboxykinase from Ascophyllum nodosum. J Phycol 25: 568–576

    Article  CAS  Google Scholar 

  • Keeley JA (1990) Photosynthetic pathways in freshwater aquatic plants. Trends Ecol Evol 5: 330–333

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15: 1021–1035

    Article  CAS  Google Scholar 

  • Keeley JE, Mathews RP, Walker CM (1983) Diurnal acid metabolism in Isoetes howellii from a temporary pool and a permanent lake. Am J Bot 70: 854–857

    Article  CAS  Google Scholar 

  • Koundal KK, Sinha SK (1981) Malic acid exudation and photosynthetic characteristics in Cicer arietinum. Phytochemistry 20: 1251–1252

    Article  CAS  Google Scholar 

  • Koundal KR, Sinha SK (1983) Evaluation of the significance of malic acid secretion in chickpea. Physiol Plant 58: 189–192

    Article  CAS  Google Scholar 

  • Kutzbach JE, Gallimore RG (1989) Pangean climates. Megamonsoons of the megacontinent. J Geophys Res 94: 3341–3357

    Article  Google Scholar 

  • Lauter DJ, Munns DN (1986) Water loss via the glandular trichomes of chickpea (Cicer arietinum L.). J Exp Bot 37: 640–649

    Article  Google Scholar 

  • Lemon ER (ed) (1986) CO2 and plants. The responses of plants to rising levels of atmospheric carbon dioxide. American Association for the Advancement of Science, Washinton, DC

    Google Scholar 

  • Li WH, Gouy M, Wolfe KH, Sharp PM (1989) Angiosperm origins. Nature 342: 131–132

    Article  Google Scholar 

  • Long SR (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ 14: 729–739

    Article  CAS  Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629

    Article  Google Scholar 

  • Lüttge U (1989) Vascular epiphytes: setting the scene. In: Lüttge U (ed) Vascular plants as epiphytes. Springer, Berlin Heidelberg New York, pp 1–14

    Chapter  Google Scholar 

  • Marino BD, McElroy MB, Salawitch RJ, Spaulding WG (1992) Glacial-to-interglacial variations in the carbon isotope composition of atmospheric CO2. Nature 357: 461–466

    Article  CAS  Google Scholar 

  • Martin W, Gierl A, Saedler H (1989a) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48

    Article  CAS  Google Scholar 

  • Martin W, Gierl A, Saedler H (1989b) Angiosperm origins. Nature 342: 132

    Article  Google Scholar 

  • Meyer CP, Canny MJ (1975) CO, storage in Eucalyptus oil glands: a hypothesis disproved. Aust J Plant Physiol 2: 647–658

    Article  CAS  Google Scholar 

  • Mooney HA, Björkman O, Collatz GJ (1978) Photosynthetic acclimation to temperature in the desert shrub Larrea divaricata. I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiol 61: 406–410

    Article  PubMed  CAS  Google Scholar 

  • Nelson T, Langdale JA (1992) Developmental genetics of C4 photosynthesis. Annu Rev Plant Physiol Mol Biol 43: 25–47

    Article  CAS  Google Scholar 

  • Nielsen SL, Gacia E, Sand-Jensen K (1991) Land plants of amphibious Littorella uniflora (L.) Aschers maintain utilization of CO2 from the sediment. Oecologia 88: 258–262

    Article  Google Scholar 

  • Nobel PS (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119: 183–205

    Article  CAS  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20: 153–517

    Article  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379–414

    Article  CAS  Google Scholar 

  • Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of photosynthesis. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology: New Series, vol 12B. Springer, Berlin Heidelberg New York, pp 479–547

    Chapter  Google Scholar 

  • Parrish JT, Ziegler AM, Scotese CR (1982) Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 40: 67–101

    Article  Google Scholar 

  • Pedersen O, Sand-Jensen K (1992) Adaptations of submerged Lobelia dortmanna to aerial life form: morphology, carbon sources and oxygen dynamics. Oikos 65: 85–96

    Article  Google Scholar 

  • Pelster B, Scheid P (1992) Countercurrent concentration and gas secretion in the fish swim bladder. Physiol Zool 65: 1–16

    Google Scholar 

  • Pilon-Smits (1992) Variation and evolution of crassulacean acid metabolism in Sedum and Aeonium (Crassulaceae). PhD Thesis, Rijksuniversiteit te Utrecht, Utrecht

    Google Scholar 

  • Proctor MCF, Raven JA, Rice SK (1992) Stable carbon isotope discrimination measurements in Sphagnum and other bryophytes: physiological and ecological implications. J Bryol 17: 193–202

    Google Scholar 

  • Prÿs-Jones OE, Willmer P (1992) The biology of alkaline nectar in the purple toothwort (Lathraea clandestina): ground level defences. Biol J Linn Soc 45: 373–388

    Article  Google Scholar 

  • Raven JA (1977) H+ and Ca2+ in phloem and symplast: relation of relative immobility to the cytoplasmic nature of the transport paths. New Phytol 79: 465–480

    Article  CAS  Google Scholar 

  • Raven JA (1984) Energetics and transport in aquatic plants. AR Liss, New York

    Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytol 101: 25–77

    Article  CAS  Google Scholar 

  • Raven JA (1986) Biochemical disposal of excess H+ in growing plants? New Phytol 104: 175–206

    Article  CAS  Google Scholar 

  • Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109: 279–287

    Article  CAS  Google Scholar 

  • Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathway. New Phytol 116: 1–18

    Article  CAS  Google Scholar 

  • Raven JA (1991a) Plant responses to high CO2 concentrations: relevance to previous high O2 episodes. Palaeogeogr Palaeoelimatol Palaeoecol (Global and Planetary Change Section) 97: 19–38

    Article  Google Scholar 

  • Raven JA (1991b) Implications of inorganic C utilization: ecology, evolution and geochemistry. Can J Bot 69: 908–924

    Article  CAS  Google Scholar 

  • Raven JA (1992) Energy and nutrient acquisition by autotrophic symbioses. Symbiosis 14: 33–60

    Google Scholar 

  • Raven JA (1993) The evolution of vascular land plants in relation to quantitative functioning of dead water-conducting cells and stomata. Biol Rev 68: 337–363

    Article  Google Scholar 

  • Raven JA, Farquhar GD (1990) The influence of N metabolism and organic acid synthesis on the natural abundance of C isotopes in plants. New Phytol 116: 505–529

    Article  CAS  Google Scholar 

  • Raven JA, Glidewell SM (1981) Processes limiting photosynthetic conductance. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 109–136

    Google Scholar 

  • Raven JA, Johnston AM (1991) Photosynthetic carbon assimilation by Prasiola stipitata (Prasiolales, Chlorophyta) under emersed and submersed conditions: relationship to the taxonomy of Prasiola. Br Phycol J 26: 247–257

    Article  Google Scholar 

  • Raven JA, Newman JR (1994) Requirement for carbonic anhydrase activity in processes other than photosynthetic inorganic carbon assimilation. Plant Cell Environ 17: 123–130

    Article  CAS  Google Scholar 

  • Raven JA, Osborne BA, Johnston AM (1985) Uptake of CO2 by aquatic vegetation. Plant Cell Environ 8: 417–425

    Article  CAS  Google Scholar 

  • Raven JA, MacFarlane JJ, Griffiths H (1986) The application of carbon isotope techniques. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell, Oxford, pp 129–149

    Google Scholar 

  • Raven JA, Johnston AM, MacFarlane JJ, Surif MB, McInroy SG (1987) Diffusion and active transport of inorganic carbon species in freshwater and marine macroalgae. In: Biggins J (ed) Progress in photosynthesis research, vol 4. Nijhoff/Junk, Dordrecht, pp 333–340

    Google Scholar 

  • Raven JA, Handley LL, Mclnroy S, McKenzie L, Richards JH, Samuelsson G (1988) The role of root CO2 uptake and CAM in inorganic C acquisition by plants of the isoetid life form. A review, with new data on Eriocaulon decangulare. New Phytol 108: 1–20

    Article  Google Scholar 

  • Reed ML (1979) Intracellular location of carbonate dehydratase (carbonic anhydrase) in leaf tissue. Plant Physiol 63: 216–217

    Article  PubMed  CAS  Google Scholar 

  • Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick AE (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352: 425–427

    Article  CAS  Google Scholar 

  • Rustin P, Meyer CR, Wedding RT (1988) Identification of substrate and effector binding sites of phosphoenolpyruvate carboxylase from Crassula argentea. A possible role of phosphoenolpyruvate as substrate and activator. J Biol Chem 263: 17611–17614

    PubMed  CAS  Google Scholar 

  • Sanders D, Davies JM, Rea PA, Brosnan JM, Johannes E (1992) Transport of H +, K+ and Ca2+ at the vacuolar membrane of plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 169–188

    Google Scholar 

  • Smith BN, Madhaven S (1982) Carbon isotope ratios in obligate and facultative CAM plants. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 231–243

    Google Scholar 

  • Smith JAC, Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Plant organelles. Cambridge University Press, Cambridge, pp 141–167

    Google Scholar 

  • Smith JAC, Heuer S (1981) Determination of the volume of intercellular spaces in leaves and some values for CAM plants. Ann Bot (New Ser) 48: 915–918

    Google Scholar 

  • Smith SD, Nobel PS (1986) Deserts, In: Baker NR, Long SP (eds) Photosynthesis in contrasting environments. Elsevier, Amsterdam, pp 13–62

    Google Scholar 

  • Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE (1979) Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC. Aust J Plant Physiol 6: 557–567

    Article  CAS  Google Scholar 

  • Surif MB, Raven JA (1989a) Exogenous inorganic carbon sources for photosynthesis in seawater by members on the Fucales and Laminariales (Phaeophyta): ecological and taxonomic implications. Oecologia 78: 97–105

    Article  Google Scholar 

  • Surif MB, Raven JA (1989b) Occurrence of diel changes in titratable acidity in plant cell contents: indication of CAM-like metabolism in plants native to Scotland and plants from elsewhere. Trans Bot Soc Edinb 45: 235–244

    Article  Google Scholar 

  • Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in eulittoral and normally submersed members of the Fucales and the Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia 82: 68–80

    Article  Google Scholar 

  • Tidwell WD, Nambudiri EMV (1989) Tomlinsonia thomassonii, gen. et sp. nov., a per-mineralized grass from the Upper Miocene Ricardo Formation, California. Rev Palaeobot Palynol 60: 165–177

    Article  Google Scholar 

  • Tidwell WD, Nambudiri EMV (1990) Tomlinsonia stichkania sp. nov., a permineralized grass from the Pliocene to (?)Pleistocene China Ranch beds in Sperry Wash, California. Bot Gaz 151: 263–274

    Article  Google Scholar 

  • Troughton JH, Card KA, Hendy CH (1974a) Photosynthetic pathways and carbon isotope discrimination by plants. Carnegie Inst Washington Year Book 73: 768–780

    Google Scholar 

  • Troughton JH, Wells PV, Mooney HA (1974b) Photosynthetic mechanisms and palaeoecology from carbon isotope ratios in ancient specimens of C4 and CAM plants. Science 185: 610–612

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki M, Miyachi S, Winter K, Edwards GE (1982) Localization of carbonic anhydrase in CAM plants. Plant Sci Lett 24: 211–218

    Article  CAS  Google Scholar 

  • Valdes PJ, Sellwood BW (1992) A palaeoclimatic model for the Kimmeridgian. Palaeogeogr Palaeoclimatol Palaeoecol 40: 67–101

    Google Scholar 

  • Waisel Y (1991) The glands of Tamarix aphylla: a system for salt recretion or for carbon concentration. Physiol Plant 83: 506–510

    Article  CAS  Google Scholar 

  • Webb DR, Rattray MR, Brown JMA (1988) A preliminary survey for crassulacean acid metabolism (CAM) in submerged aquatic macrophytes of New Zealand. NZ J Mar Fresh Water Res 22: 231–235

    Article  CAS  Google Scholar 

  • West-Eberhard MJ (1986) Alternative adaptations, speciation, and phylogeny (a review). Proc Natl Acad Sci USA 82: 1388–1392

    Article  Google Scholar 

  • Winter K (1981) Carbon dioxide and water vapour exchange, malate content and δ 13C value in Cicer arietinum grown under two water regimes. Z Pflanzenphysiol 101: 421–430

    CAS  Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387

    Google Scholar 

  • Winter K, Ziegler H (1992) Induction of crassulacean acid metabolism in Mesembryanthemum crystallinum increases reproductive success under conditions of drought and salinity stress. Oecologia 92: 475–479

    Article  Google Scholar 

  • Wright VP, Vanstone SD (1991) Addressing the carbon dioxide content of ancient atmospheres using palaeocretes: theoretical and empirical constraints. J Geol Soc Lond 148: 945–957

    Article  CAS  Google Scholar 

  • Wurtelle ES, Nikolau BJ (1990) Plants contain multiple biotin enzymes: discovery of 3-methylcrotonyl-CoA carboxylase, propionyl CoA carboxylase and pyruvate carboxylase in the plant kingdom. Arch Biochem Biophys 278: 179–186

    Article  Google Scholar 

  • Zeigler AM, Raymond AL, Gierlowski TC, Horrell MA, Rowley DB, Lottes AL (1987) Coal, climate and terrestrial productivity: the present and early Cretaceous compared. In: Scott AC (ed) Coal and coal-bearing strata: recent advances. Geol Soc Spec Publ 32. Geological Society, London, pp 25–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raven, J.A., Spicer, R.A. (1996). The Evolution of Crassulacean Acid Metabolism. In: Winter, K., Smith, J.A.C. (eds) Crassulacean Acid Metabolism. Ecological Studies, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79060-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79060-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79062-1

  • Online ISBN: 978-3-642-79060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics