Skip to main content

Features of Roots of CAM Plants

  • Chapter
Crassulacean Acid Metabolism

Part of the book series: Ecological Studies ((ECOLSTUD,volume 114))

Abstract

Plants utilizing crassulacean acid metabolism (CAM) typically grow in habitats with prolonged dry periods (Kluge and Ting 1978; Osmond et al. 1982; Winter 1985). Root access to water and nutrients is restricted by low soil moisture, such as in deserts and other seasonally arid environments, or by limited soil volume, such as in rock crevices and tree bark. For plants under these conditions, a root system that readily takes up water from a wet soil but limits water loss to a dry soil is particularly advantageous. Indeed, the root systems of CAM plants such as desert succulents have several features that facilitate absorption and conduction of water when it is available, reduce water loss when the soil is dry, and regain high water uptake rates when the soil is rewetted (Kausch 1965; Nobel and Sanderson 1984; Nobel and Cui 1992; North and Nobel 1991, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benzing DH, Ott DW, Friedman WE (1982) Roots of Sobralia macrantha (Orchidaceae): structure and function of the velamen-exodermis complex. Am J Bot 69: 608–614

    Article  Google Scholar 

  • Cannon WA (1911) The root habits of desert plants. Publication 131, Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Eller BM, Ruess BR, Ferrari S (1991) Reestablishment of water uptake by succulents after drought: potometric field determinations in the Richtersveld (Cp., Rep. South Africa). Bot Helv 101: 259–265

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. John Wiley, New York

    Google Scholar 

  • Ewers FW, North GB, Nobel PS (1992) Root-stem junctions of a desert monocotyledon and a dicotyledon: hydraulic consequences under wet conditions and during drought. New Phytol 121: 377–385

    Article  Google Scholar 

  • Fiscus EL (1977) Determination of hydraulic and osmotic properties of soybean root systems. Plant Physiol 59: 1013–1020

    Article  PubMed  CAS  Google Scholar 

  • Freeman TP (1969) The developmental anatomy of Opuntia basilaris I. Embryo, root, transition zone. Am J Bot 56: 1067–1074

    Article  Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Google Scholar 

  • Gibson AC, Calkin HW, Nobel PS (1984) Xylem anatomy, water flow, and hydraulic conductance in the fern Cyrtomium falcatum. Am J Bot 71: 564–574

    Article  Google Scholar 

  • Hamilton MW (1970) The comparative morphology of three cylindropuntias. Am J Bot 57: 1255–1263

    Article  Google Scholar 

  • Huang B, Nobel PS (1992) Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root growth and drought-induced abscission. J Exp Bot 43: 1441–1449

    Article  Google Scholar 

  • Hunt ER, Nobel PS (1987) Allometric root/shoot relationships and predicted water uptake for desert succulents. Ann Bot 59: 571–577

    Google Scholar 

  • Jordan PW, Nobel PS (1984) Thermal and water relations of roots of desert succulents. Ann Bot 54: 705–717

    Google Scholar 

  • Kausch W (1965) Beziehungen zwischen Wurzelwachstum, Transpiration und CO2-Gaswech- sel bei einigen Kakteen. Planta 66: 229–238

    Article  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Landsberg JJ, Fowkes ND (1978) Water movement through plant roots. Ann Bot 42: 493–508

    Google Scholar 

  • Matelson TJ, Nadkarni NM, Longino JT (1993) Longevity of fallen epiphytes in a neotropical montane forest. Ecology 74: 265–269

    Article  Google Scholar 

  • McCully ME, Canny MJ (1988) Pathways and processes of water and nutrient in roots. Plant Soil 111: 159–170

    Article  CAS  Google Scholar 

  • Nobel PS (1976) Water relations and photosynthesis of a desert CAM plant, Agave deserti. Plant Physiol 58: 576–582

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (1977) Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado Desert. Oecologia 27: 117–133

    Article  Google Scholar 

  • Nobel PS (1988) Environmental biology of agaves and cacti. Cambridge University Press, Cambridge

    Google Scholar 

  • Nobel PS (1991a) Tansley review 32. Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119: 183–205

    Article  CAS  Google Scholar 

  • Nobel PS (1991b) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Nobel PS, Cui M (1992) Hydraulic conductances of the soil, the root-soil air gap, and the root: changes for desert succulents in drying soil. J Exp Bot 43: 319–326

    Article  Google Scholar 

  • Nobel PS, Sanderson J (1984) Rectifier-like activities of roots of two desert succulents. J Exp Bot 35: 727–737

    Article  Google Scholar 

  • Nobel PS, Quero E, Linares H (1989) Root versus shoot biomass: responses to water, nitrogen, and phosphorus applications for Agave lechuguilla. Bot Gaz 150: 411–416

    Article  Google Scholar 

  • Nobel PS, Schulte PJ, North GB (1990) Water influx characteristics and hydraulic conductivity for roots of Agave deserti (Agavaceae). J Exp Bot 41: 409–415

    Article  Google Scholar 

  • Nobel PS, Loik ME, Meyer RW (1991) Microhabitat and diel tissue acidity changes for two sympatric cactus species differing in growth habit. J Ecol 79: 167–182

    Article  Google Scholar 

  • Nobel PS, Miller PM, Graham EA (1992a) Influence of rocks on soil temperature, soil water potential, and rooting patterns for desert succulents. Oecologia 92: 90–96

    Article  Google Scholar 

  • Nobel PS, Alm DM, Cavelier J (1992b) Growth respiration, maintenance respiration and structural-carbon costs for roots of three desert succulents. Funct Ecol 6: 79–85

    Article  Google Scholar 

  • Nobel PS, Huang B, Garcia-Moya E (1993) Root distribution, growth, respiration, and hydraulic conductivity for two highly productive agaves. J Exp Bot 44: 747–754

    Article  Google Scholar 

  • North GB, Nobel PS (1991) Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (Agavaceae). Am J Bot 78: 906–915

    Article  Google Scholar 

  • North GB, Nobel PS (1992) Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120: 9–19

    Article  Google Scholar 

  • North GB, Ewers FW, Nobel PS (1992) Main root-lateral root junctions of two desert succulents: changes in axial and radial components of hydraulic conductivity during drying. Am J Bot 79: 1039–1050

    Article  Google Scholar 

  • North GB, Huang B, Nobel PS (1993) Changes in structure and hydraulic conductivity for root junctions of desert succulents as soil water status varies. Bot Acta 106: 126–135

    Google Scholar 

  • Öleson P (1978) Studies on the physiological sheaths in roots I. Ultrastructure of the exodermis in Hoya carnosa L. Protoplasma 94: 325–340

    Article  Google Scholar 

  • Osmond CB, Winter K, Ziegler H (1982) Functional significance of pathways of photosynthetic carbon assimilation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II, Encyclopedia of plant physiology, new series, vol 12B. Springer, Berlin Heidelberg New York, pp 479–547

    Chapter  Google Scholar 

  • Palta JA, Nobel PS (1989a) Root respiration for Agave deserti: influence of temperature, water status, and root age on daily patterns. J Exp Bot 40: 181–186

    Article  Google Scholar 

  • Palta JA, Nobel PS (1989b) Influences of water status, temperature, and root age on daily patterns of root respiration for two cactus species. Ann Bot 63: 651–662

    Google Scholar 

  • Rundel PW, Nobel PS (1991) Structure and function in desert root systems. In: Atkinson D (ed) Plant root growth, an ecological perspective. Blackwell, Oxford, pp 349–378

    Google Scholar 

  • Salim M, Pitman MG (1984) Pressure-induced water and solute flow through plant roots. J Exp Bot 35: 869–881

    Article  Google Scholar 

  • Schönherr J, Ziegler H (1980) Water permeability of Betula periderm. Planta 147: 345–354

    Article  Google Scholar 

  • Shishkoff N (1987) Distribution of the dimorphic hypodermis of roots in angiosperm families. Ann Bot 60: 1–15

    Google Scholar 

  • Sperry JS (1986) Relationship of xylem embolism to xylem pressure potential, stomatal closure and shoot morphology in the plant Rhapis excelsa. Plant Physiol 80: 110–116

    Article  PubMed  CAS  Google Scholar 

  • Sprent JI (1975) Adherence of sand particles to soybean roots under water stress. New Phytol 74: 461–463

    Article  Google Scholar 

  • Steudle E, Oren R, Schulze ED (1987) Water transport of maize roots. Measurement of hydraulic conductivity, solute permeability, and of reflection coefficients of excised roots using the pressure probe. Plant Physiol 84: 1220–1232

    Article  PubMed  CAS  Google Scholar 

  • Szarek SR, Johnson HB, Ting IP (1973) Drought adaptation in Opuntia basilaris. Significance of recycling carbon through crassulacean acid metabolism. Plant Physiol 23: 539–541

    Article  Google Scholar 

  • Trewavas AJ, Jones HG (1991) An assessment of the role of ABA in plant development. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. BIOS Scientific, Oxford, pp 169–188

    Google Scholar 

  • Tyree MT, Sperry JS (1989) The vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40: 19–38

    Article  Google Scholar 

  • Vogt E, Schönherr J, Schmidt HW (1983) Water permeability of periderm membranes isolated enzymatically from potato tubers (Solanum tuberosum L.). Planta 158: 294–301

    Article  CAS  Google Scholar 

  • von Guttenberg H (1968) Der primäre Bau der Angiospermenwurzel. In Linsbauer K, Tischler G, Pascher A (eds) Handbuch der Pflanzenanatomie. Borntraeger, Berlin

    Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387

    Google Scholar 

  • Wullstein LH, Pratt SA (1981) Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Am J Bot 68: 408–419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nobel, P.S., North, G.B. (1996). Features of Roots of CAM Plants. In: Winter, K., Smith, J.A.C. (eds) Crassulacean Acid Metabolism. Ecological Studies, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79060-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79060-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79062-1

  • Online ISBN: 978-3-642-79060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics