Skip to main content

Ontogenetic Development of Crassulacean Acid Metabolism as Modified by Water Stress in Peperomia

  • Chapter
Book cover Crassulacean Acid Metabolism

Part of the book series: Ecological Studies ((ECOLSTUD,volume 114))

Abstract

Peperomia species (Piperaceae) may show C3 photosynthesis, CAM photosynthesis, or CAM-cycling in which stomata and gas exchange occur primarily during the day with a diurnal fluctuation of acidity typical of CAM (Holthe et al. 1992). In CAM-cycling, enzymes of CAM are present (Sipes and Ting 1985; Ting 1985; Ting and Sipes 1985). In Peperomia species, there is a division of photosynthetic labor among the various tissues of the leaf (Nishio and Ting 1987, 1993). The upper multiple epidermis functions as a window leaf filtering out much of the incident radiant energy and has about 5% of the leaf chlorophyll (Nishio and Ting 1987). The middle palisade mesophyll has most of the C3 photosynthetic activity including ribulose 1,5-bisphosphate carboxylase/oxygenase(RUBISCO) and the light-dependent CO2 fixation. The lower spongy mesophyll has the appearance of CAM tissue, and along with the multiple epidermis contains most of the phosphoenolpyruvate carboxylase (PEPC) and dark CO2 fixation (Nishio and Ting 1987). The lower spongy mesophyll is enriched in PSI relative to PSII, evidently related to the extra ATP requirement of this tissue (Nishio and Ting 1993). Stomata are restricted to the abaxial epidermis. Malic acid accumulates during the night. During the subsequent day period, decarboxylation keeps CO2 high in the vicinity of the photosynthetic palisade cells, thereby minimizing photorespiration (Nishio and Ting 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amagasa T (1982) The influence of leaf age on the diurnal changes of malate and starch in the CAM plant Kalanchoë daigremontiana Hamet et Perr. Z Pflanzenphysiol 108: 93–96

    CAS  Google Scholar 

  • Burger WC (1977) The Piperales and the monocots--alternate hypothesis for the origin of monocotyledonous flowers. Bot Rev 43: 345–393

    Article  Google Scholar 

  • Canellas PF, Wedding RT (1980) Substrate and metal ion interactions in the NAD+ malic enzyme for cauliflower. Arch Biochem Biophys 199: 259–264

    Article  PubMed  CAS  Google Scholar 

  • Chu C, Dai Z, Ku MSB, Edwards GE (1990) Induction of crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol 93: 1253–1260

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (1992) Salt stress alters A/T-rich DNA-binding factor interactions with the phosphenolpyruvate carboxylase promoter from Mesembryanthemum crystallinum. Plant Mol Biol 20: 411–424

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Meyer G, Michalowski CB, Schmitt JM, Bohnert HJ (1989) Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715–725

    Article  PubMed  CAS  Google Scholar 

  • Eller BM, Ruess BR, Sharma S (1988) Carbon gain, water conservation and expression of CAM during leaf development of Senecio medley-woodii. J Plant Physiol 133: 304–309

    Google Scholar 

  • Hanscom Z, Ting IP (1978) Responses of succulents to plant water stress. Plant Physiol 61: 327–330

    Article  PubMed  CAS  Google Scholar 

  • Holthe PA, Sternberg LSL, Ting IP (1987) Developmental control of CAM in Peperomia scandens. Plant Physiol 84: 743–747

    Article  PubMed  CAS  Google Scholar 

  • Holthe PA, Patel A, Ting IP (1992) The occurrence of CAM in Peperomia. Selbyana 13:77–87

    Google Scholar 

  • Huerta AJ, Ting IP (1988) Effects of various levels of CO2 on the induction of crassulacean acid metabolism in Portulacaria afra (L.) Jacq. Plant Physiol 88: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Jiao JA, Chollet R (1991) Posttranslational regulation of phosphoenolpyruvate carboxylase in C4 and crassulacean acid metabolism plants. Plant Physiol 95: 981–985

    Article  PubMed  CAS  Google Scholar 

  • Jones MB (1975) The effect of leaf age on leaf resistance and CO2 exchange of the CAM plant Bryophyllum fedtschenkoi. Planta 123: 91–96

    Article  Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical evaluation. Biochemistry 16: 4543–4751

    Article  Google Scholar 

  • Nishida K (1978) Effect of leaf age on light and dark 14CO2 fixation in a CAM plant, Bryophyllum calycinum. Plant Cell Physiol 19: 935–941

    CAS  Google Scholar 

  • Nishio JN, Ting IP (1987) Carbon flow and metabolic specialization in the tissue layers of the crassulacean acid metabolism plant, Peperomia camptotricha. Plant Physiol 84: 600–604

    Article  PubMed  CAS  Google Scholar 

  • Nishio JN, Ting IP (1993) Photosynthetic characteristics of the palisade mesophyll and spongy mesophyll in the CAM/C4 intermediate plant, Peperomia camptotricha. Bot Acta 106:120–125

    CAS  Google Scholar 

  • Ostrem JA, Olson SW, Schmitt JM, Bohnert HJ (1987) Salt stress increases the level of translatable mRNA for phosphoenolpyruvate carboxylase in Mesembryanthemum crystallinum. Plant Physiol 84: 1270–1275

    Article  PubMed  CAS  Google Scholar 

  • Patel A (1992) Expression of photosynthetic genes during leaf development in Peperomia species. PhD Dissertation, University of California, Riverside, 123 pp

    Google Scholar 

  • Patel A, Ting IP (1987) Relationship between CAM and respiration in Peperomia camptotricha. Plant Physiol 84: 640–642

    Article  PubMed  CAS  Google Scholar 

  • Pautot V, Holzer F, Walling LL (1991) Differential expression of tomato proteinase inhibitor I and II genes during bacterial pathogen invasion and wounding. Mol Plant Microbe Interact 4: 284–292

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH, McCurdy W, Shimazaki Y, Cordonnier MM (1986) Immunodetection of phytochrome: Immunocytochemistry, immunoblotting, and immunoquantitation. In: Linskens HF, Jackson JF (eds) Immunology in plant sciences. Springer, Berlin Heidelberg New York, pp 50–74

    Google Scholar 

  • Rayder L, Ting IP (1983) Shifts in the carbon metabolism of Xerosicyos danguyi H. Humb. (Cucurbitaceae) brought about by water stress. I. General characteristics. Plant Physiol 72: 606–610

    Article  PubMed  CAS  Google Scholar 

  • Sipes D, Ting IP (1985) Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol 77: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Sipes D, Ting IP (1989) Kinetic properties of phosphoenolpyruvate carboxylase in Peperomia camptotricha. Plant Physiol 91: 1050–1055

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, McElwain EF, Bohnert HJ (1992) Convergent induction of osmotic stress-responses. Plant Physiol 100:416–423

    Article  PubMed  CAS  Google Scholar 

  • Ting IP (1981) Effects of abscisic acid on CAM in Portulacaria afra. Photosynth Res 2: 39–48

    Article  CAS  Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36: 595–622

    Article  CAS  Google Scholar 

  • Ting IP (1987) Stomata in plants with crassulacean acid metabolism. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 353–366

    Google Scholar 

  • Ting IP, Sipes D (1985) Metabolic modifications of crassulacean acid metabolism - CAM-idling and CAM cycling. In: Burris RH, Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier, New York, pp 371–378

    Google Scholar 

  • Ting IP, Hann J, Sipes D, Patel A, Walling LL (1993) Expression of P-enolpyruvate carboxylase and other aspects of CAM during the development of Peperomia camptotricha leaves. Bot Acta 106:313–319

    CAS  Google Scholar 

  • Vernon DM, Ostrem JA, Schmitt JM, Bohnert HJ (1988) PEPCase transcript levels in Mesembryanthemum crystallinum decline rapidly upon relief from salt stress. Plant Physiol 86: 1002–1004

    Article  PubMed  CAS  Google Scholar 

  • Von Willert DJ, Kirst GO, Treichel S, von Willert K (1976) The effect of leaf age and salt stress on malate accumulation and phosphoenolpyruvate carboxylase activity in Mesembryanthemum crystallinum. Plant Sci Lett 7: 341–346

    Article  Google Scholar 

  • Winter K (1979) Effect of different CO2 regimes on the induction of crassulacean acid metabolism in Mesembryanthemum crystallinum L. Aust J Plant Physiol 6: 589–594

    Article  CAS  Google Scholar 

  • Winter K (1980) Day/night changes in the sensitivity of phosphoenolpyruvate carboxylase to malate during crassulacean acid metabolism. Plant Physiol 65: 792–796

    Article  PubMed  CAS  Google Scholar 

  • Wu MX, Wedding RT (1985) Regulation of phosphoenolpyruvate carboxylase from Crassula by interconversion of oligomeric forms. Arch Biochem Biophys 240: 655–662

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ting, I.P., Patel, A., Kaur, S., Hann, J., Walling, L. (1996). Ontogenetic Development of Crassulacean Acid Metabolism as Modified by Water Stress in Peperomia . In: Winter, K., Smith, J.A.C. (eds) Crassulacean Acid Metabolism. Ecological Studies, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79060-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79060-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79062-1

  • Online ISBN: 978-3-642-79060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics