Application of the PCR for Detection of Antibiotic Resistance Genes in Environmental Samples

  • K. Smalla
  • J. D. van Elsas
Part of the Springer Lab Manuals book series (SLM)


Extensive use of antibiotics in human or animal therapy and in husbandry has contributed significantly to an enhanced incidence of antibiotic resistant bacteria. Multiple antibiotic resistance has been recognized for a long time to represent an increasingly important problem in hospital and community (Cohen 1992; Neu 1992).


Sodium Dodecyl Sulfate Antibiotic Resistance Antibiotic Resistance Gene Southern Blot Hybridization nptII Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen SR (1993) Effects of waste water treatment on the species composition and antibiotic resistance ofcoliform bacteria. Curr Microbiol 26: 97–103CrossRefGoogle Scholar
  2. Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in Actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70 (8): 2276–2280CrossRefGoogle Scholar
  3. Byrd JJ, Colwell RR (1990) Maintenance of plasmids pBR322 and pUC8 in noneulturable Escherichia coli in the marine environment. Appl Environ Microbiol 56 (7): 2104–2107Google Scholar
  4. Byrd JJ, Colwell RR (1993) Long-term survival and plasmid maintenance of Escherichia coli in marine microcosms. FEMS Microbiol Ecol 12: 9–14CrossRefGoogle Scholar
  5. Cohen ML (1992) Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257: 1050–1055CrossRefGoogle Scholar
  6. Cresswell N, Saunders VA, Wellington EMH (1991) Detection and quantification of Streptomyces violaceolatus plasmid DNA in soil. Lett Appl Microbiol 13: 193–197CrossRefGoogle Scholar
  7. Edwards RM, Loutit MW (1984) Chloramphenicol and tetracycline resistant bacteria of non-sewage origin in an oxidation pond. New Zealand J Sci 27: 87–91Google Scholar
  8. Facinelli B, Roberts MC, Giovanetti E, Casolari C, Fabio U, Varaldo PE (1993) Genetic basis of tetracycline resistance in food-borne isolates of Listeria innocua. Appl Environ Microbiol 59 (2): 614–616Google Scholar
  9. Flamm RK, Phillips KL, Tenover FC, Plorde JJ (1993) A survey of clinical isolates of Enterohacteriaceae using a series of DNA probes for aminoglycoside resistance genes. Mol Cell Probes 7: 139–144CrossRefGoogle Scholar
  10. Herrick JB, Madsen EL, Batt CA, Ghiorse WC (1993) Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl Environ Microbiol 59 (3): 687–694Google Scholar
  11. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54 (3): 703–711Google Scholar
  12. Hopkins DW, Macnaughton SJ, O’Donnell AG (1991) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol Biochem 23 (3): 217–225CrossRefGoogle Scholar
  13. Jacobsen CS, Rasmussen OF (1992) Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol 58 (8): 2458–2462Google Scholar
  14. Lee C, Langlois BE, Dawson KA (1993) Detection of tetracycline resistance determinants in pig isolates from three herds with different histories of antimicrobial agent exposure. Appl Environ Microbiol 59 (5): 1467–1472Google Scholar
  15. Leff LG, Dana JR, McArthur JV, Shimkets LJ (1993) Detection of Tn5-like sequences in kanamycin-resistant stream bacteria and environmental DNA. Appl Environ Microbiol 59 (2): 417–421Google Scholar
  16. Morgan JAW, Rhodes G, Pickup RW (1993) Survival of nonculturable Aeromonas salmonicida in lake water. Appl Environ Microbiol 59 (3): 874–880Google Scholar
  17. Nap J-P, Bijvoet J, Stiekema WJ (1992) Biosafety of kanamycin-resistant transgenic plants. Transgenic Res 1: 239–249CrossRefGoogle Scholar
  18. Neu HC (1992) The crisis in antibiotic resistance. Science 257: 1064–1072CrossRefGoogle Scholar
  19. Niemi M, Sibakov M, Niemela S (1983) Antibiotic resistance among different species of fecal coliforms isolated from water samples. Appl Environ Microbiol 45 (1): 79–83Google Scholar
  20. Ogan MT, Nwiika DE (1993) Studies on the ecology of aquatic bacteria of the lower Niger delta: multiple antibiotic resistance among the standard plate count organisms. J Appl Bacteriol 74: 595–602Google Scholar
  21. Ogram A, Sayler GS, Barkay TJ (1987) DNA extraction and purification from sediments. J Microbiol Meth 7: 57–66CrossRefGoogle Scholar
  22. Ouellette M, Bissonnette L, Roy PH (1987) Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 ß-laetamase gene. ProcNatl Acad Sci USA 84: 7378–7382CrossRefGoogle Scholar
  23. Padilla C, Vasquez C (1993) Plasmid-mediated antibiotic resistance in Psendomonas aeruginosa from well water sediments and their transformation into Escherichia coli. Lett Appl Microbiol 16: 17–20CrossRefGoogle Scholar
  24. Pathak SP, Bhattacheijee JW, Ray PK (1993) Seasonal variation in survival and antibiotic resistance among various bacterial populations in a tropical river. J Gen Appl Microbiol 39: 47–56CrossRefGoogle Scholar
  25. Piepersberg W, Distler J, Heinzel P, Perez-Gonzalez J-A (1988) Antibiotic resistance by modification: many resistance genes could be derived from cellular control genes in actinomycetes - a hypothesis. Actinomycetologica 2: 83–98CrossRefGoogle Scholar
  26. Pillai SD, Josephson KL, Bailey RL, Gerby CP, Pepper EL (1991) Rapid method for processing soil samples for polymerase chain reaction amplification of specific gene sequences. Appl Environ Microbiol 57: 2283–2286Google Scholar
  27. Porteous LA, Armstrong JL (1991) Recovery of bulk DNA from soil by a rapid, small-scale extraction method. Current Microbiol 22: 345–348CrossRefGoogle Scholar
  28. Porteous LA, Armstrong JL (1993) A simple mini-method to extract DNA directly from soil for use with polymerase chain reaction amplification. Curr Microbiol 27: 115–118CrossRefGoogle Scholar
  29. Recorbet G, Givaudan A, Steinberg C, Bally R, Normand P, Faurie G (1992) Tn5 to assess soil fate of genetically marked bacteria: screening for aminoglycoside resistance advantage and labelling specificity. FEMS Microbiol Ecol 86: 187–194CrossRefGoogle Scholar
  30. Sambrook J, Fritseh EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, USAGoogle Scholar
  31. Saunders JR (1984) Genetics and evolution of antibiotic resistance. Med Bull 40 (1): 54–60Google Scholar
  32. Sayler GS, Shields MS, Tedford ET, Breen A, Hooper SW, Sirotkin KM, Davis JW (1985) Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol 49: 1295–1303Google Scholar
  33. Sayler GS, Fleming JT, Applegate B, Werner C (1992) Nucleic acid extraction and analysis: detecting genes and their activity in the environment. In: Wellington EMH, Van Elsas, JD (eds) Genetic interactions among microorganisms in the natural environment. Pergamon, Oxford, pp 237–257Google Scholar
  34. Selenska S, Klingmüller W (1991) Direct detection of nif-gene sequences of Enterobacter agglomerans in soil. FEMS Microbiol Lett 80: 243–246CrossRefGoogle Scholar
  35. Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57 (1): 138–163Google Scholar
  36. Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, Van Elsas JD (1993a) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74: 78–85CrossRefGoogle Scholar
  37. Smalla K, Prager R, Isemann M, Pukall R, Tietze E, Van Elsas JD, Tschäpe H (1993b) Distribution of streptothricin acetyltransferase encoding determinants among environmental bacteria. Mol Ecol 2: 27–33CrossRefGoogle Scholar
  38. Smalla K, Van Overbeek LS, Pukall R, Van Elsas JD (1993c) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13: 47–58CrossRefGoogle Scholar
  39. Smit E, van Elsas JD (1992) Conjugal gene transfer in the soil environment: new approaches and developments. In: Gauthier MJ (ed) Gene transfers and environment. Springer, Berlin Heidelberg, New York, pp 79–94Google Scholar
  40. Somerville CC, Knight IT, Straube WL, Colwell RR (1989) Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol 55 (3): 548–554Google Scholar
  41. Stokes HW, Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol 3: 1669–1683CrossRefGoogle Scholar
  42. Thomson CJ, Amyes SGB (1993) Molecular epidemiology of the plasmid-encoded TEM-1 ß-lactamase in Scotland. Epidemiol Infect 110: 117–125CrossRefGoogle Scholar
  43. Tebbe C, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59 (8): 2657–2665Google Scholar
  44. Tietze E, Tschäpe H, Golubev AV (1990) DNA probes for studying streptothricin resistance evolution in enteric bacteria. J Basic Microbiol 30: 279: 287Google Scholar
  45. Trieu-Cuot P, Arthur M, Courvalin P (1987) Origin, evolution and dissemination of antibiotic resistance genes. Microbiol Sei 4 (9): 263–266Google Scholar
  46. Tsai Y-L, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57 (4): 1070–1074Google Scholar
  47. Tschäpe H, Tietze E, Prager R, Voigt W, Wolter E, Seitmann G (1984) Plasmid-borne streptothricin resistance in gram-negative bacteria. Plasmid 12: 189–196CrossRefGoogle Scholar
  48. Turpin PE, Maycroft KA, Rowlands CL, Wellington EMH (1993) Viable but non-culturable salmonellas in soil. J Appl Bacteriol 74: 421–427CrossRefGoogle Scholar
  49. Van Asselt GJ, Vliegenthart JS, Petit PLC, Van de Klundert JAM, Mouton RP (1992) High-level aminoglycoside resistance among enterococci and group A streptococci. J Antimicrob Chemother 30: 651–659Google Scholar
  50. Van Elsas JD (1992) Antibiotic resistance gene transfer in the environment: an overview. In: Wellington EMH, Van Elsas JD (eds) Genetic interactions among microorganisms in the natural environment. Pergamon, Oxford, pp 17–39Google Scholar
  51. Vliegenthart JS, Ketelaar-van Galen P, Van de Kundert JAM (1990) Identification of three genes coding for aminoglycoside-modifying enzymes by means of the polymerase chain reaction. J Antimicrob Chemother 25: 759–765Google Scholar
  52. Weichart D, Oliver JD, Kjelleberg S (1992) Low temperature induced non-eulturability and killing of Vibrio vulnificus. FEMS Microbiol Lett 100: 205–210Google Scholar
  53. Wendt-Potthoff K, Backhaus H, Smalla K (1994) Monitoring the fate of genetically engineered bacteria sprayed on the phylloplane of bush beans and grass. FEMS Microbiol Ecol 15: 279–290CrossRefGoogle Scholar
  54. Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Bent R, Kingston RE, Moore DD, Smith JA, Seidmann JG, Struhl K (eds) Current protocols in molecular biology. Greene and Wiley, New YorkGoogle Scholar
  55. Young CC, Burghoff RL, Keim LG, Minak-Bernero V, Lute JR, Hinton SM (1993) Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction- amplifiable DNA from soils. Appl Environ Microbiol 59 (6) 1972–1974Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • K. Smalla
  • J. D. van Elsas

There are no affiliations available

Personalised recommendations