A New Compromise Measure of Inequality

  • Manfred Krtscha


In this paper we consider the so-called statistical or mechanistic measures of inequality which are sequences of functions
$${{I}^{n}}:\dot{\mathbb{R}}_{ + }^{n}: = \mathbb{R}_{ + }^{n}\backslash \{ \underline 0 \} \to \mathbb{R},\;n \in \{ 2,3,...\} , $$




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. W. Bossert and A. Pfingsten: Intermediate Inequality: Concepts, Indices, and Welfare Implication, Mathematical Social Sciences 19 (1990) 117–134 North—Holland.CrossRefGoogle Scholar
  2. W. Eichhorn and W. Gehrig: Measurement of Inequality in Economics, Modern Applied Mathematics, Optimisation and Operations Research, edited by B. Korte. North-Holland, Amsterdam, New York, Oxford 1982, 657–693.Google Scholar
  3. W. Eichhorn: On a Class of Inequality Measures, Social Choice and Welfare, 1988CrossRefGoogle Scholar
  4. A. Pfingsten: Distributionally-neutral Tax Changes for Different Inequality Concepts, J. Public Econ. 30 (1986), 385–393.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1994

Authors and Affiliations

  • Manfred Krtscha
    • 1
  1. 1.Institut für Mathematische StochastikUniversität KarlsruheKarlsruheGermany

Personalised recommendations