Parallel Processor Scheduling

  • Jacek Błazewicz
  • Klaus H. Ecker
  • Günter Schmidt
  • Jan Węglarz

Abstract

This chapter is devoted to the analysis of scheduling problems in parallel processor environment. As before the three main criteria to be analyzed are schedule length, mean flow time and lateness. Then, some more developed models of multiprocessor systems are described, including semi-identical processors and uniform k-processor systems. Corresponding results are presented in the four following sections.

Keywords

Optimal Schedule Precedence Constraint Schedule Length Preemptive Schedule Precedence Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AH73.
    D. Adolphson, T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math. 25, 1973, 403–423.Google Scholar
  2. AHU74.
    A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.Google Scholar
  3. Ash72.
    S. Ashour, Sequencing Theory, Springer Verlag Berlin, 1972.Google Scholar
  4. Avi78.
    A. Avizienis, Fault tolerance: the survival attribute of digital systems, Proc. IEEE 66, 1978, 1109–1125.Google Scholar
  5. Bak74.
    K. Baker, Introduction to Sequencing and Scheduling, J. Wiley, New York, 1974.Google Scholar
  6. BCS74.
    J. Bruno, E. G. Coffman, Jr., R. Sethi, Scheduling independent tasks to reduce mean finishing time, Comm. ACM 17, 1974, 382–387.Google Scholar
  7. BCSW76a.
    J. Błaiżewicz, W. Cellary, R. Słowiński, J. Węglarz, Deterministyczne problemy szeregowania zadań na równoleglych procesorach. Cz. I. Zbiory zadań niezależnych, Podstawy Sterowania 6, 1976, 155–178.Google Scholar
  8. BCSW76b.
    J. Błażewicz, W. Cellary, R. Słowiński, J. Węglarz, Deterministyczne problemy szeregowania zadań na równoleglych procesorach, Cz. II. Zbiory zadań niezależnych, Podstawy Sterowania 6, 1976, 297–320.Google Scholar
  9. BCW77.
    J. Błażewicz, W. Cellary, J. Węglarz, A strategy for scheduling splittable tasks to reduce schedule length, Acta Cybernet. 3, 1977, 99–106.Google Scholar
  10. BDOS92.
    J. Błażewicz, M. Drozdowski, P. dell’Olmo, M. G. Speranza, Scheduling multiprocessor tasks on three dedicated processors, Inform. Process. Lett. 1992, to appear.Google Scholar
  11. BDSW90.
    I. Błażewicz, M. Drozdowski, G. Schmidt, D. de Werra, Scheduling independent two processor tasks on a uniform duo-processor system, Discrete Appl. Math. 28, 1990, 11–20.Google Scholar
  12. BDW84.
    J. Błażewicz, M. Drabowski, J. Węglarz, Scheduling independent 2-processor tasks to minimize schedule length, Inform. Process. Lett. 18, 1984, 267–273.Google Scholar
  13. BDW86.
    J. Błażewicz, M. Drabowski, J. Węglarz, Scheduling multiprocessor tasks to minimize schedule length, IEEE Trans. Comput. C-35, 1986, 389–393.Google Scholar
  14. BE83.
    J. Błażewicz, K. Ecker, A linear time algorithm for restricted bin packing and scheduling problems, Oper. Res. Lett. 2, 1983, 80–83.Google Scholar
  15. BGJ77.
    P. Brucker, M. R. Garey, D. S. Johnson, Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness, Math. Oper. Res. 2, 1977, 275–284.Google Scholar
  16. Bla77.
    J. Błażewicz, Simple algorithms for multiprocessor scheduling to meet deadlines, Inform. Process. Lett. 6, 1977, 162–164.Google Scholar
  17. Bru76a.
    J. Bruno, Scheduling algorithms for minimizing the mean weighted flow-time, E. G. Coffman, Jr. (ed.), Computer and Job-Shop Scheduling Theory, John Wiley & Sons, New York, 1976.Google Scholar
  18. Bru76b.
    P. J. Brucker, Sequencing unit-time jobs with treelike precedence on m machines to minimize maximum lateness, Proceedings IX International Symposium on Mathematical Programming, Budapest, 1976.Google Scholar
  19. CD73.
    E. G. Coffman, Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall, Englewood Cliffs, N. J., 1973.Google Scholar
  20. CFL83.
    E. G. Coffman, Jr., G. N. Frederickson, G. S. Luecker, Probabilistic analysis of the LPT processor scheduling heuristic, (unpublished paper), 1983.Google Scholar
  21. CFL84.
    E. G. Coffman, Jr., G. N. Frederickson, G. S. Luecker, A note on expected makespans for largest-first sequences of independent task on two processors, Math. Oper. Res. 9, 1984, 260–266.Google Scholar
  22. CG72.
    E. G. Coffman, Jr., R. L. Graham, Optimal scheduling for two-processor systems, Acta Inform. 1, 1972, 200–213.Google Scholar
  23. CG91.
    E. G. Coffman, Jr., M. R. Garey, Proof of the 4/3 conjecture for preemptive versus nonpreemptive two-processor scheduling, Report Bell Laboratories, Murray Hill, 1991.Google Scholar
  24. CGJ78.
    E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, An application of bin-packing to multiprocessor scheduling, SIAM J. Comput. 7, 1978, 1–17.Google Scholar
  25. CGJ84.
    E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, Approximation algorithms for bin packing — an updated survey, in: G. Ausiello, M. Lucertini, P. Serafini (eds.), Algorithm Design for Computer System Design, Springer Verlag, Vienna, 1984, 49–106.Google Scholar
  26. CL75.
    N.-F. Chen, C. L. Liu, On a class of scheduling algorithms for multiprocessors computing systems, in: T.-Y. Feng (ed.), Parallel Processing, Lecture Notes in Computer Science 24, Springer Verlag, Berlin, 1975, 1–16.Google Scholar
  27. CMM67.
    R. W. Conway, W. L. Maxwell, L. W. Miller, Theory of Scheduling, Addison-Wesley, Reading, Mass., 1967.Google Scholar
  28. Cof73.
    E. G. Coffman, Jr., A survey of mathematical results in flow-time scheduling for computer systems, GI-3. Jahrestagung, Hamburg, Springer Verlag Berlin, 1973, 25–46.Google Scholar
  29. Cof76.
    E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New York, 1976.Google Scholar
  30. CS76.
    E. G. Coffman, Jr., R. Sethi, A generalized bound on LPT sequencing, RAIRO-Informatique 10, 1976, 17–25.Google Scholar
  31. DD81.
    M. Dal Cin, E. Dilger, On the diagnostability of self-testing multimicroprocessor systems, Microprocessing and Microprogramming 7, 1981, 177–184.Google Scholar
  32. DL88.
    J. Du, J. Y-T. Leung, Scheduling tree-structured tasks with restricted execution times, Inform. Process. Lett. 28, 1988, 183–188.Google Scholar
  33. DL89.
    J. Du, J. Y-T. Leung, Scheduling tree-structured tasks on two processors to minimize schedule length, SIAM J. Discrete Math. 2, 1989, 176–196.Google Scholar
  34. DLY91.
    J. Du, J. Y-T. Leung, G. H. Young, Scheduling chain structured tasks to minimize makespan and mean flow time, Inform, and Comput. 92, 1991, 219–236.Google Scholar
  35. DW85.
    D. Dolev, M. K. Warmuth, Scheduling flat graphs, SIAM J. Comput. 14, 1985, 638–657.Google Scholar
  36. FB73.
    E. B. Fernandez, B. Bussel, Bounds on the number of processors and time for multiprocessor optimal schedules, IEEE Trans. Comput. C22, 1973, 745–751.Google Scholar
  37. FG86.
    A. Federgruen, H. Groenevelt, Preemptive scheduling of uniform machines by ordinary network flow techniques, Management Sci. 32, 1986, 341–349.Google Scholar
  38. FKN69.
    M. Fujii, T. Kasami, K. Ninomiya, Optimal sequencing of two equivalent processors, SIAM J. Appl. Math. 17, 1969, 784–789.Google Scholar
  39. Fre82.
    S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop, Horwood, Chichester, 1982.Google Scholar
  40. FRK87.
    J. B. G. Frenk, A. H. G. Rinnooy Kan, The rate of convergence to optimality of the LPT rule, Discrete Appl. Math. 14, 1986, 187–197.Google Scholar
  41. FRK87.
    J. B. G. Frenk, A. H. G. Rinnooy Kan, The asymptotic optimality of the LPT rule, Math. Oper. Res. 12, 1987, 241–254.Google Scholar
  42. Gab82.
    H. N. Gabow, An almost linear algorithm for two-processor scheduling, J. Assoc. Comput. Mach. 29, 1982, 766–780.Google Scholar
  43. Gar-.
    M. R. Garey, Unpublished result.Google Scholar
  44. Gar73.
    M. R. Garey, Optimal task sequencing with precedence constraints, Discrete Math. 4, 1973, 37–56.Google Scholar
  45. GG73.
    M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with limited resources, 4th Symposium on Operating System Principles, 1966, 104–111.Google Scholar
  46. GG75.
    M. R. Garey, R. L. Graham, Bounds for multiprocessor scheduling with resource constraints, SIAM J. Comput. 4, 1975, 187–200.Google Scholar
  47. GIS77.
    T. Gonzalez, O. H. Ibarra, S. Sahni, Bounds for LPT schedules on uniform processors, SIAM J. Comput. 6, 1977, 155–166.Google Scholar
  48. GJ76.
    M. R. Garey, D. S. Johnson, Scheduling tasks with nonuniform deadlines on two processors, J. Assoc. Comput. Mach. 23, 1976, 461–467.Google Scholar
  49. GJ77.
    M. R. Garey, D. S. Johnson, Two-processor scheduling with start-times and deadlines, SIAM J. Comput. 6, 1977, 416–426.Google Scholar
  50. GJ79.
    M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.Google Scholar
  51. GJST81.
    M. R. Garey, D. S. Johnson, B. B. Simons, R. E. Tarjan, Scheduling unit time tasks with arbitrary release times and deadlines, SIAM J. Comput. 10, 1981, 256–269.Google Scholar
  52. GJTY83.
    M. R. Garey, D. S. Johnson, R. E. Tarjan, M. Yannakakis, Scheduling opposing forests, SIAM J. Algebraic and Discrete Meth. 4, 1983, 72–93.Google Scholar
  53. GLLRK79.
    R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling theory: a survey, Ann. Discrete Math. 5, 1979, 287–326.Google Scholar
  54. Gon77.
    T. Gonzalez, Optimal mean finish time preemptive schedules, Technical Report 220, Computer Science Department, Pennsylvania State Univ. 1977.Google Scholar
  55. Gra66.
    R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Tech. J. 45, 1966, 1563–1581.Google Scholar
  56. Gra69.
    R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math. 17, 1969, 263–269.Google Scholar
  57. Gra76.
    R. L. Graham, Bounds on performance of scheduling algorithms, Chapter 5 in [Cof76].Google Scholar
  58. GS78.
    T. Gonzalez, S. Sahni, Preemptive scheduling of uniform processor systems, J. Assoc. Comput. Mach. 25, 1978, 92–101.Google Scholar
  59. GS78.
    T. Gonzalez, S. Sahni, Preemptive scheduling for uniform processor systems, J. Assoc. Comput. Mach. 25, 1978, 81–101.Google Scholar
  60. HLS77.
    E. G. Horvath, S. Lam, R. Sethi, A level algorithm for preemptive scheduling, J. Assoc. Comput. Mach. 24, 1977, 32–43.Google Scholar
  61. Hor73.
    W. A. Horn, Minimizing average flow time with parallel machines, Oper. Res. 21, 1973, 846–847.Google Scholar
  62. Hor74.
    W. A. Horn, Some simple scheduling algorithms, Naval Res. Logist. Quart. 21, 1974, 177–185.Google Scholar
  63. HS76.
    E. Horowitz, S. Sahni, Exact and approximate algorithms for scheduling non-identical processors, J. Assoc. Comput. Mach. 23, 1976, 317–327.Google Scholar
  64. HS87.
    D. S. Hochbaum, D. B. Shmoys, Using dual approximation algorithms for scheduling problems: theoretical and practical results, J. Assoc. Comput. Mach. 34, 1987, 144–162.Google Scholar
  65. Hu61.
    T. C. Hu, Parallel sequencing and assembly line problems, Oper. Res. 9, 1961, 841–848.Google Scholar
  66. IK77.
    O. H. Ibarra, C. E. Kim, Heuristic algorithms for scheduling independent tasks on nonidentical processors, J. Assoc. Comput. Mach. 24, 1977, 280–289.Google Scholar
  67. Jac55.
    J. R. Jackson, Scheduling a production line to minimize maximum tardiness, Res. Report 43, Management Research Project, University of California, Los Angeles, 1955.Google Scholar
  68. JM84.
    D. S. Johnson, C. L. Monma, A scheduling problem with simultaneous machine requirement, TIMS XXVI, Copenhagen, 1984.Google Scholar
  69. Joh83.
    D. S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 4, 1983, 189–203.Google Scholar
  70. Kar72.
    R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, 85–104.Google Scholar
  71. Kar74.
    A. W. Karzanov, Determining the maximal flow in a network by the method of pre-flows, Soviet Math. Dokl. 15, 1974, 434–437.Google Scholar
  72. Kar84.
    N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4, 1984, 373–395.Google Scholar
  73. KE75.
    O. Kariv, S. Even. An O(n2.5) algorithm for maximum matching in general graphs, 16th Annual Symposium on Foundations of Computer Science IEEE, 1975, 100–112.Google Scholar
  74. Ked70.
    S. K. Kedia, A job scheduling problem with parallel machines, Unpublished Report, Dept. of Ind. Eng. University of Michigan, Ann Arbor, 1970.Google Scholar
  75. Kha79.
    L. G. Khachiyan, A polynomial algorithm for linear programming (in Russian), Dokl. Akad. Nauk SSSR, 244, 1979, 1093–1096.Google Scholar
  76. KK85.
    N. Karmarkar, R. M. Karp, The differing method of set partitioning, Report UCB/CSD 82/113, Computer Science Division, University of California, Berkeley, 1982.Google Scholar
  77. KK85.
    H. Krawczyk, M. Kubale, An approximation algorithm for diagnostic test scheduling in multicomputer systems, IEEE Trans. Comput. C-34, 1985, 869–872.Google Scholar
  78. Kub87.
    M. Kubale, The complexity of scheduling independent two-processor tasks on dedicated processors, Inform. Proc. Lett. 24, 1987, 141–147.Google Scholar
  79. Kun76.
    M. Kunde, Beste Schranke beim LP-Scheduling, Bericht 7603, Institut fur Informatik und Praktisehe Mathematik, University Kiel, 1976.Google Scholar
  80. Law73.
    E. L. Lawler, Optimal sequencing of a single machine subject to precedence constraints, Management Sci. 19, 1973, 544–546.Google Scholar
  81. Law76.
    E. L. Lawler, Combinatorial optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.Google Scholar
  82. Law82a.
    E. L. Lawler, Recent results in the theory of machine scheduling, in: A. Bachem, M. Grotschel, B. Korte (eds.) Mathematical Programming: The State of Art, Bonn 1982, Springer Verlag, Berlin, 1982, 202–234.Google Scholar
  83. Law82b.
    E. L. Lawler, Preemptive scheduling in precedence-constrained jobs on parallel machines, in: M. A. H. Dempster, J. K. Lenstra, A. H. G. Rinnooy Kan (eds.), Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, 101–123.Google Scholar
  84. Lee91.
    C.-Y. Lee, Parallel machine scheduling with nonsimultaneous machine available time, Discrete Appl. Math. 30, 1991, 53–61.Google Scholar
  85. Len81b.
    J. K. Lenstra, Sequencing by enumerative methods, Mathematical Centre Tracte 69, Mathematisch Centrum, Amsterdam, 1981.Google Scholar
  86. LL74a.
    J. W. S. Liu, C. L. Liu, Performance analysis of heterogeneous multiprocessor computing systems, in E. Gelenbe, R. Mahl (eds.), Computer Architecture and Networks, North Holland, Amsterdam, 1974, 331–343.Google Scholar
  87. LL74b.
    J. W. S. Liu, C. L. Liu, Performance analysis of heterogeneous multiprocessor computing systems, in: E. Gelenbe, R. Mahl (eds.), Computer Architecture and Networks, North Holland, Amsterdam, 1974, 331–343.Google Scholar
  88. LL74c.
    J. W. S. Liu, C. L. Liu, Bounds on scheduling algorithms for heterogeneous computing systems, Technical Report UIUCDCS-R-74-632, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1974.Google Scholar
  89. LL78.
    E. L. Lawler, J. Labetoulle, Preemptive scheduling of unrelated parallel processors by linear programming, J. Assoc. Comput. Mach. 25, 1978, 612–619.Google Scholar
  90. LLLRK82.
    J. Lageweg, J. K. Lenstra, E. L. Lawler, A. H. G. Rinnooy Kan, Computer Aided complexity classification of combinatorial problems, Comm. ACM 25, 1982, 817–822.Google Scholar
  91. LLLRK84.
    J. Labetoulle, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Preemptive scheduling of uniform processors subject to release dates, in: W. R. Pulleyblank (ed.), Progress in Combinatorial Optimization, Academic Press, New York, 1984, 245–261.Google Scholar
  92. LLRK82.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Recent developments in deterministic sequencing and scheduling: a survey, in M. A. H. Dempster, J. K. Lenstra, A. H. G. Rinnooy Kan (eds.), Deterministic and Stochastic Scheduling, Reidel, Dordrecht, 1982, 35–73.Google Scholar
  93. LLRKS89.
    E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, Sequencing and scheduling: algorithms and complexity, Report Centre Mathematics and Computer Science, Amsterdam, 1989.Google Scholar
  94. LRK78.
    J. K. Lenstra, A. H. G. Rinnooy Kan, Complexity of scheduling under precedence constraints, Oper. Res. 26, 1978, 22–35.Google Scholar
  95. LRK84.
    J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling theory since 1981: an annotated bibliography, in M. O’h Eigearthaigh, J. K. Lenstra, A. H. G. Rinnooy Kan (eds.), Combinatorial Optimization: Annotated Bibliographies, J. Wiley, Chichester, 1984.Google Scholar
  96. LRKB77.
    J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of machine scheduling problems, Ann. Discrete Math. 1, 1977, 343–362.Google Scholar
  97. LS77.
    S. Lam, R. Sethi, Worst case analysis of two scheduling algorithms, SIAM J. Comput. 6, 1977, 518–536.Google Scholar
  98. MC69.
    R. Muntz, E. G. Coffman, Jr., Optimal preemptive scheduling on two-processor systems, IEEE Trans. Comput. C-18, 1969, 1014–1029.Google Scholar
  99. MC70.
    R. Muntz, E. G. Coffman, Jr., Preemptive scheduling of real time tasks on multiprocessor systems, J. Assoc. Comput. Mach. 17, 1970, 324–338.Google Scholar
  100. McN59.
    R. McNaughton, Scheduling with deadlines and loss functions, Management Sci. 6, 1959, 1–12.Google Scholar
  101. NLH81.
    K. Nakajima, J. Y-T. Leung, S. L. Hakimi, Optimal two processor scheduling of tree precedence constrained tasks with two execution times, Performance Evaluation 1, 1981, 320–330.Google Scholar
  102. Rin78.
    A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations, Nijhoff, The Hague, 1978.Google Scholar
  103. RG69.
    C. V. Ramamoorthy, M. J. Gonzalez, A survey of techniques for recognizing parallel processable streams in computer programs, AFIPS Conference Proceedings, Fall Joint Computer Conference, 1969, 1–15.Google Scholar
  104. Ros-.
    unpublished result.Google Scholar
  105. Rot66.
    M. H. Rothkopf, Scheduling independent tasks on parallel processors, Management Sci. 12, 1966, 347–447.Google Scholar
  106. RS83.
    H. Röck, G. Schmidt, Machine aggregation heuristics in shop scheduling, Methods Oper. Res. 45, 1983, 303–314.Google Scholar
  107. Sah79.
    S. Sahni, Preemptive scheduling with due dates, Oper. Res. 5, 1979, 925–934.Google Scholar
  108. SC80.
    S. Sahni, Y. Cho, Scheduling independent tasks with due times on a uniform processor system, J. Assoc. Comput. Mach. 27, 1980, 550–563.Google Scholar
  109. Sch84.
    G. Schmidt, Scheduling on semi-identical processors, Z. Oper Res. A28, 1984, 153–162.Google Scholar
  110. Sch88.
    G. Schmidt, Scheduling independent tasks with deadlines on semi-identical processors, J. Opl. Res. Soc. 39, 1988, 271–277.Google Scholar
  111. Set76.
    R. Sethi, Algorithms for minimal-length schedules, Chapter 2 in [Cof76].Google Scholar
  112. Set77.
    R. Sethi, On the complexity of mean flow time scheduling, Math. Oper. Res. 2, 1977, 320–330.Google Scholar
  113. Sev91.
    S. V. Sevastjanov, Private communication, 1991.Google Scholar
  114. Slo78.
    R. Słowiński, Scheduling preemptible tasks on unrelated processors with additional resources to minimise schedule length, in G. Bracci, R. C. Lockemann (eds.), Lecture Notes in Computer Science, vol. 65, Springer Verlag, Berlin, 1978, 536–547.Google Scholar
  115. SW77.
    R. Słowiński, J. Węglarz, Minimalno-czasowy modelsieciowy z roznymi sposobami wykonywania czynnosci, Przeglad Statystyczny 24, 1977, 409–416.Google Scholar
  116. Ull76.
    J. D. Ullman, Complexity of sequencing problems, Chapter 4 in [Cof76].Google Scholar
  117. VLL90.
    B. Veltman, B. J. Lageweg, J. K. Lenstra, Multiprocessor scheduling with communication delays, Centre for Mathematics and Computer Science, Report BS - R9018, 1990.Google Scholar
  118. WBCS77.
    J. Węglarz, J. Błażewicz, W. Cellary, R. Słowiński, An automatic revised simplex method for constrained resource network scheduling, ACM Trans. Math. Software 3, 1977, 295–300.Google Scholar
  119. Wer84.
    D. de Werra, Preemptive scheduling linear programming and network flows, SIAM J. Algebra and Discrete Math. 5, 1984, 11–20.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1994

Authors and Affiliations

  • Jacek Błazewicz
    • 1
  • Klaus H. Ecker
    • 2
  • Günter Schmidt
    • 3
  • Jan Węglarz
    • 1
  1. 1.Instytut InformatykiPolitechnika PoznanskaPoznańPoland
  2. 2.Institut für InformatikTechnische Universität ClausthalClausthal-ZellerfeldGermany
  3. 3.Lehrstuhl für Betriebswirtschaftslehre, insbesondere Wirtschaftsinformatik IIUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations