Skip to main content

Silicon Millimeter-Wave Integrated Circuit Technology

  • Chapter
Silicon-Based Millimeter-Wave Devices

Part of the book series: Springer Series in Electronics and Photonics ((SSEP,volume 32))

Abstract

A monolithic integrated circuit consists of a semiconductor single-crystal chip containing both active and passive elements and their interconnections. Since the invention of the integrated circuit in 1958 much progress has been made concerning packaging density, power consumption, speed and frequency performance. The concept of Microwave Integrated Circuits (MIC) was inaugurated in 1964. Prior to that nearly all microwave equipment utilized waveguide, coaxial or strip-line circuits. These systems have been costly, large and heavy. Especially for the millimeter-wave region (30–300 GHz) these systems became rather expensive due to the wavelength-determined small size and the necessary highly-precise machine tolerances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 7.1

  1. R.K. Hoffmann: Handbook of Microwave Integrated Circuits (Artech House, Norwood 1987)

    Google Scholar 

  2. T.M. Hyltin: Microstrip transmission on semiconductor dielectrics. IEEE MTT-13, 777–781 (1965)

    Google Scholar 

  3. P.H. Saul: Comparison of GaAs and silicon ICs in high speed digital applications. Mil. Micr. Conf. (1986), pp. 460–466

    Google Scholar 

  4. D.N. Mcquiddy, J.W. Wassel, J.B. Lagrange, W.R. Wisseman: Monolithic microwave integrated circuits: An historical perspective. IEEE Trans. MTT-32, 997–1008 (1984)

    Google Scholar 

  5. B.W. Battershall, S.P. Emmons: Optimization of diode structures for monolithic integrated microwave circuit. IEEE J. SC-3, 107–112 (1968)

    Google Scholar 

  6. A. Eitel: Monolithic IC techniques produce first all-silicon X-band switch. Electronics, 76–81 (January 1967)

    Google Scholar 

  7. A. Rosen, M. Caulton, P. Stabile, A.M. Gombar, W. J-Janton, C.P. Wu, J.F. Corboy, C.W. Magee: Millimeter-wave device technology. IEEE Trans. MTT-30, 47–55 (1982)

    Google Scholar 

  8. P. Stabile, A. Rosen, W.M. Janton, A. Gombar, M. Kolan: Millimeter wave silicon device and integrated circuit technology. Proc. IEEE MTT-Symp. (1984) pp. Digest, pp. 448–450

    Google Scholar 

  9. A. Rosen, M. Caulton, P. Stabile, A.M. Gombar, W.J. Janton, C.P. Wu, J.F. Corboy, C.W. Magee: Silicon as a millimeter-wave monolithically integrated substrate — A new look. RCA Rev. 42, 633–656 (1981)

    CAS  Google Scholar 

  10. P. Stabile, A. Rosen: A silicon technology for millimeter-wave monolithic circuits. RCA Rev. 45, 587–605 (1984)

    CAS  Google Scholar 

  11. E. Kasper, J.C. Bean (eds.): Silicon Molecular Beam Epitaxy. (CRC, Boca Raton 1988)

    Google Scholar 

  12. M.A. Herman, H. Sitter: Molecular Beam Epitaxy, Springer Ser. Mater. Sci., Vol. 7, (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  13. A. Heuberger: X-ray lithography. Microelectr. Eng. 3, 535–556 (1985)

    Article  CAS  Google Scholar 

  14. K.M. Strohm, J.F. Luy, E. Kasper, J. Buechler, P. Russer: Silicon technology for monolithic millimeter wave integrated circuits. Mikrowellen & HF Magazin, 14, No. 8, 750–760 (1988)

    Google Scholar 

  15. K.M. Strohm, J. Buechler, P. Russer, E. Kasper: Silicon high resistivity substrate millimeter-wave technology. Monolithic Circuits Symp. IEEE 1986 Microwave and Millimeter-Wave (Baltimore, MD), (1986) pp. 93-97

    Google Scholar 

  16. J. Buechler, E. Kasper, P. Russer, K.M. Strohm: Silicon high resistivity substrate millimeter wave technology. IEEE Trans. MTT-34, 1516–1521 (1986)

    CAS  Google Scholar 

  17. W.R. Runyan: Semiconductor Measurements and Instrumentation. (McGraw-Hill, New York 1975)

    Google Scholar 

  18. D.K. Schroder: Semiconductor Material and Device Characterization. (Wiley, New York 1990)

    Google Scholar 

  19. L.J. van der Pauw: A method for measuring specific resistivity and hall effect of discs of arbitrary shape. Phil. Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  20. R. Brennan: Determination of diffusion characteristics using two and four point probe measurements. Solid State Technol., 127–132 (December 1984)

    Google Scholar 

Section 7.2

  1. S.M. Sze: Semiconductor Devices-Physics and Technology. (Wiley, New York 1985)

    Google Scholar 

  2. S.M. Sze(ed.): VLSI Technology. (McGraw-Hill, New York 1983)

    Google Scholar 

  3. W.C. O’Mara, R.B. Herring, L.P. Hunt (eds.): Handbook of Semiconductor Silicon Technology. (Noyes, New Jersey 1990)

    Google Scholar 

  4. D.J. Elliot: Integrated Circuit Fabrication Technology (McGraw-Hill, New York 1982)

    Google Scholar 

  5. G.K. Reeves, H.B. Harrison: Obtaining the specific contact resistance from transmission line model measurements. IEEE EDL-3, 111–113 (1982)

    Google Scholar 

  6. E. Kasper, H. Kibbel F. Schäffler: An industrial single-slice Si-MBE apparatus. J. Electrochem. Soc., 136, 1154–1158, (1989)

    Article  CAS  Google Scholar 

  7. H. Jorke, H. Kibbel: Doping by secondary implantation. J. Electrochem. Soc., 133, 774–778, (1986)

    Article  CAS  Google Scholar 

  8. H. Kibbel, E. Kasper, P. Narozny, HU. Schreiber: Boron doping of SiGe base of heterobipolar transistor. Thin Sol. Films, 184, 163–169 (1990)

    Article  CAS  Google Scholar 

  9. E. Kasper, F. Schäffler: Low temperature molecular beam epitaxy of silicon (Si-MBE). Physica Scripta, T 29, 147–151 (1989)

    Article  Google Scholar 

  10. P.H. Singer: Trends in wafer cleaning. Semiconductor Int. 15, No. 13, 36–39 (1992)

    Google Scholar 

  11. W. Kern, A.D. Puotinen: Cleaning solutions based on hydrogen peroxide for use in semiconductor technology. RCA Rev. 31, 187–206 (1970)

    CAS  Google Scholar 

  12. K.M. Strohm, J.F. Luy, J. Buechler, F. Schäffler, A. Schaub: Planar 100 GHz silicon detector circuits. Microelectronic Eng., 15, 285–288 (1991)

    Article  CAS  Google Scholar 

  13. K.M. Strohm, J. Buechler, J.F. Luy: 90 GHz SIMMWIC rectennas. 22nd Europ. Microwave Conf. (1992), pp. 608–613

    Google Scholar 

  14. U. Güttich, K.M. Strohm, F. Schäffler: D-band subharmonic mixer with silicon planar doped barrier diodes. IEEE Trans. MTT-39, 366–368 (1991)

    Google Scholar 

  15. J.F. Luy, K.M. Strohm, J. Buechler: A 91 GHz Si/SiGe resonant tunneling detector. Archiv Elektr. Übertrg., 46, 370–373 (1992)

    Google Scholar 

  16. K.M. Strohm, J. Buechler, J.F. Luy, F. Schäffler: A silicon technology for active high frequency circuits. Microelectronic Eng. 19, 717–720 (1992)

    Article  Google Scholar 

  17. A. Gruhle, H. Kibbel, U. König, U. Erben, E. Kasper: MBE grown Si-SiGe HBT’s with high β, f T and f max. IEEE EDL-13, 206–208 (1992)

    Google Scholar 

  18. L.K. White: Positive-resist processing for step-and-repeat optical lithography. RCA Rev., 47, 345–379 (1986)

    CAS  Google Scholar 

  19. K.M. Strohm, J. Hersener, H.J. Herzog: Stress compensated Si-membrane masks for X-ray lithography with synchrotron radiation. Eurocon 86 Proc, Paris, Paper AI.4 (1986)

    Google Scholar 

  20. K.M. Strohm, J. Hersener, E. Piper: X-ray lithography for monolithic millimeter wave integration. Microcircuit Eng. 9, 131–134 (1989)

    Article  CAS  Google Scholar 

  21. W. Kern: Chemical etching of silicon, germanium, gallium arsenide and gallium phosphide. RCA Rev. 39, 278–309 (1978)

    CAS  Google Scholar 

  22. D.M. Manos, D.L. Flamm,(eds.): Plasma Etching-An Introduction. (Academic, Boston 1989)

    Google Scholar 

  23. H. Linde, L. Austin: Wet silicon etching with aqueous amine gallates. J. Electrochem. Soc. 139, 1170–1174 (1992)

    Article  CAS  Google Scholar 

  24. G.M. Rebeiz, L.P.B. Katehi, W.Y. Ali-Ahmad, G.V. Eleftheriades, C.C. Ling: Integrated horn antennas for millimeter-wave applications. Radioscientist 3, 68–77 (1992)

    Google Scholar 

  25. K.E. Peterson: Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982)

    Article  Google Scholar 

  26. G.W. Turner, C.L. Chen, M.K. Connors, L.J. Mahoney, W.L. McGilvary: Selective Plasma Etching of Si from GaAs-on Si wafers for microwave via-hole formation. Electron. Lett. 26, 854–855 (1990)

    Article  Google Scholar 

  27. J.M. Poate: Diffusion and reactions in gold films. Sol. State Tech., 227–234 (April 1982)

    Google Scholar 

  28. N.H.L. Koster, S. Koßlowski, R. Bertenburg, S. Heinen and I. Wolff: Investigations on air bridges used for MMICs in CPW technique. 19th Europ. Microwave Conf. (1989) pp. 666–671

    Google Scholar 

  29. J.K. Singh, O.P. Daga, H.S. Kothari, B.R. Singh, W.S. Khokle: Air bridge and via hole technology for GaAs based microwave devices. Microelectr. J. 19, 23–27 (1988)

    Article  Google Scholar 

Section 7.3

  1. J.M. Dieudonné, B. Adelseck, K.-E. Schmegner, R. Rittmeyer, A. Colquhoun: Technology related design of monolithic millimeter wave Schottky diode mixers. IEEE Trans. MTT-40, 1466–1474 (1992)

    Google Scholar 

  2. J. Hersener, E. Piper, A. Wilhelm, G. Birkenstock: Application of X-ray lithography for manufacturing a metal-oxide semiconductor field effect transistor tetrode, J. Vac. Sci. Technol. B 5, 253–256 (1987)

    Article  CAS  Google Scholar 

  3. S.M. Sze: Physics of Semiconductor Devices. (Wiley, New York 1981)

    Google Scholar 

  4. K.M. Strohm, J.F. Luy, J. Buechler, J. Hersener, H. Kibbel, F. Schäffler, A. Schaub, A. Wilhelm: Submikron-Technologie für Millimeterwellensensoren auf hochohmigem Silizium. BMFT-Abschlußbericht NT 2769C0 (1991)

    Google Scholar 

  5. J.F. Luy, K.M. Strohm, J. Büchler: Monolithic Si/SiGe millimeter-wave detector circuits. Int. Semicon. Dev. Res. Symp. (December 1991), pp. 155–158

    Google Scholar 

  6. B. Bayraktaroglu: Monolithic IMPATT technology. Microwave J. 73–86 (April 1989)

    Google Scholar 

  7. M. Kuisl, U. König, F. Schäffler, R. Lossos: Characterization of MBE-grown polysilicon, in Polycrystalline Semiconductors, ed. by H.J. Möller, H.P. Strunk, J.H. Werner, Springer Proc. Phys 35, 192–197, (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  8. A.K. Sharma: Solid-state control devices: State of the art. Microwave J., 95–112 (1989)

    Google Scholar 

  9. P.J. Stabile, A. Rosen, P.R. Herczfeld: Optically controlled lateral PIN diodes and microwave control circuit. RCA Rev. 47, 443–456 (1986)

    CAS  Google Scholar 

Section 7.4

  1. S.M. Sze: High Speed Semiconductor Devices. (Wiley, New York 1990)

    Google Scholar 

  2. R.-H. Yan, K.F. Lee, D.Y. Jeon, Y.O. Kim, B.G. Park, M.R. Pinto, C.S. Rafferty, D.M. Tennant, E.H. Westerwick, G.M. Chin, M.D. Morris, K. Early, P. Mulgrew, W.M. Mansfield, R.K. Watts, A.M. Voshschenkov, J. Bokor, R.G. Swartz, A. Ourmazd: 89-GHz f T room-temperature silicon MOSFETs. IEEE EDL-13, 256–258 (1992)

    Google Scholar 

  3. T. Gomi et al.: A sub-30 psec Si bipolar LSI technology. IEDM Techn. Dig. (1988) pp. 744–747

    Google Scholar 

  4. M. Sugiyama et al.: A 40 GHz f T Si bipolar LSI technology. IEDM Techn. Dig. (1989) pp.221–224

    Google Scholar 

  5. M. Namba T. Kobayashi, T. Uchino, T. Nakamura, M. Kondo, Y. Tamaki, S. Iijima, T. Kure, M. Tanabe: A 64 GHz Si bipolar transistor using in-situ phosphorus doped polysilicon emitter technology. IEDM Techn. Dig. (1991) pp. 443–446

    Google Scholar 

  6. G.L. Patton, J.H. Comfort, B.S. Meyerson, e.F. Crabbé, G.J. Scilla, E. de Fresart, J.M.C. Stork, J.Y.-C. Sun, D.L. Harame, J.N. Burghartz: 75 GHz f T SiGe-base heterojunction bipolar transistors. IEEE EDL-11, 171–173 (1990)

    Google Scholar 

  7. A. Gruhle, H. Kibbel, U. Erben, E. Kasper: 91 GHz SiGe-HBT’s grown by MBE. Electronics Lett. 29, 415–417 (1993)

    Article  CAS  Google Scholar 

  8. L. Treitinger, M. Miura-Mattauch (eds.): Ultra-Fast Silicon Bipolar Technology. Springer Ser. Electron. Photon. Vol. 27, (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  9. S.A. Campbell, A. Gopinath: Modeling of Ge-Si heterojunction bipolar transistors for use in silicon monolithic millimeter-wave integrated circuits. IEEE Trans. MTT-37, 2046–2050 (1989)

    Google Scholar 

  10. A. Gruhle, H. Kibbel, E. Kasper: The influence of MBE-layer design on the high frequency performance of Si/SiGe HBTs. Microelectronic Eng. 19, 435–438 (1992)

    Article  Google Scholar 

  11. U. König: Electronic Si/SiGe devices: basics, technology, performance. Festkörperproblem/ Advances in Solid State Physics, 32, 199–220 (Vieweg, Braunschweig 1992)

    Google Scholar 

  12. U. Güttich, J.F. Luy, A. Gruhle: A Si-SiGe HBT dielectric resonator stabilized microstrip oscillator at X-band frequencies. IEEE Microwave and Guided Lett. 2, 281–283 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strohm, K.M. (1994). Silicon Millimeter-Wave Integrated Circuit Technology. In: Luy, JF., Russer, P. (eds) Silicon-Based Millimeter-Wave Devices. Springer Series in Electronics and Photonics, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79031-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79031-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79033-1

  • Online ISBN: 978-3-642-79031-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics