Silicon Millimeter-Wave Integrated Circuit Technology

  • K. M. Strohm
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 32)


A monolithic integrated circuit consists of a semiconductor single-crystal chip containing both active and passive elements and their interconnections. Since the invention of the integrated circuit in 1958 much progress has been made concerning packaging density, power consumption, speed and frequency performance. The concept of Microwave Integrated Circuits (MIC) was inaugurated in 1964. Prior to that nearly all microwave equipment utilized waveguide, coaxial or strip-line circuits. These systems have been costly, large and heavy. Especially for the millimeter-wave region (30–300 GHz) these systems became rather expensive due to the wavelength-determined small size and the necessary highly-precise machine tolerances.


Sheet Resistance Epitaxial Layer Heterojunction Bipolar Transistor Mask Level Microwave Integrate Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Section 7.1

  1. 7.1
    R.K. Hoffmann: Handbook of Microwave Integrated Circuits (Artech House, Norwood 1987)Google Scholar
  2. 7.2
    T.M. Hyltin: Microstrip transmission on semiconductor dielectrics. IEEE MTT-13, 777–781 (1965)Google Scholar
  3. 7.3
    P.H. Saul: Comparison of GaAs and silicon ICs in high speed digital applications. Mil. Micr. Conf. (1986), pp. 460–466Google Scholar
  4. 7.4
    D.N. Mcquiddy, J.W. Wassel, J.B. Lagrange, W.R. Wisseman: Monolithic microwave integrated circuits: An historical perspective. IEEE Trans. MTT-32, 997–1008 (1984)Google Scholar
  5. 7.5
    B.W. Battershall, S.P. Emmons: Optimization of diode structures for monolithic integrated microwave circuit. IEEE J. SC-3, 107–112 (1968)Google Scholar
  6. 7.6
    A. Eitel: Monolithic IC techniques produce first all-silicon X-band switch. Electronics, 76–81 (January 1967)Google Scholar
  7. 7.7
    A. Rosen, M. Caulton, P. Stabile, A.M. Gombar, W. J-Janton, C.P. Wu, J.F. Corboy, C.W. Magee: Millimeter-wave device technology. IEEE Trans. MTT-30, 47–55 (1982)Google Scholar
  8. 7.8
    P. Stabile, A. Rosen, W.M. Janton, A. Gombar, M. Kolan: Millimeter wave silicon device and integrated circuit technology. Proc. IEEE MTT-Symp. (1984) pp. Digest, pp. 448–450Google Scholar
  9. 7.9
    A. Rosen, M. Caulton, P. Stabile, A.M. Gombar, W.J. Janton, C.P. Wu, J.F. Corboy, C.W. Magee: Silicon as a millimeter-wave monolithically integrated substrate — A new look. RCA Rev. 42, 633–656 (1981)Google Scholar
  10. 7.10
    P. Stabile, A. Rosen: A silicon technology for millimeter-wave monolithic circuits. RCA Rev. 45, 587–605 (1984)Google Scholar
  11. 7.11
    E. Kasper, J.C. Bean (eds.): Silicon Molecular Beam Epitaxy. (CRC, Boca Raton 1988)Google Scholar
  12. 7.12
    M.A. Herman, H. Sitter: Molecular Beam Epitaxy, Springer Ser. Mater. Sci., Vol. 7, (Springer, Berlin, Heidelberg 1989)Google Scholar
  13. 7.13
    A. Heuberger: X-ray lithography. Microelectr. Eng. 3, 535–556 (1985)CrossRefGoogle Scholar
  14. 7.14
    K.M. Strohm, J.F. Luy, E. Kasper, J. Buechler, P. Russer: Silicon technology for monolithic millimeter wave integrated circuits. Mikrowellen & HF Magazin, 14, No. 8, 750–760 (1988)Google Scholar
  15. 7.15
    K.M. Strohm, J. Buechler, P. Russer, E. Kasper: Silicon high resistivity substrate millimeter-wave technology. Monolithic Circuits Symp. IEEE 1986 Microwave and Millimeter-Wave (Baltimore, MD), (1986) pp. 93-97Google Scholar
  16. 7.16
    J. Buechler, E. Kasper, P. Russer, K.M. Strohm: Silicon high resistivity substrate millimeter wave technology. IEEE Trans. MTT-34, 1516–1521 (1986)Google Scholar
  17. 7.17
    W.R. Runyan: Semiconductor Measurements and Instrumentation. (McGraw-Hill, New York 1975)Google Scholar
  18. 7.18
    D.K. Schroder: Semiconductor Material and Device Characterization. (Wiley, New York 1990)Google Scholar
  19. 7.19
    L.J. van der Pauw: A method for measuring specific resistivity and hall effect of discs of arbitrary shape. Phil. Res. Rep. 13, 1–9 (1958)Google Scholar
  20. 7.20
    R. Brennan: Determination of diffusion characteristics using two and four point probe measurements. Solid State Technol., 127–132 (December 1984)Google Scholar

Section 7.2

  1. 7.21
    S.M. Sze: Semiconductor Devices-Physics and Technology. (Wiley, New York 1985)Google Scholar
  2. 7.22
    S.M. Sze(ed.): VLSI Technology. (McGraw-Hill, New York 1983)Google Scholar
  3. 7.23
    W.C. O’Mara, R.B. Herring, L.P. Hunt (eds.): Handbook of Semiconductor Silicon Technology. (Noyes, New Jersey 1990)Google Scholar
  4. 7.24
    D.J. Elliot: Integrated Circuit Fabrication Technology (McGraw-Hill, New York 1982)Google Scholar
  5. 7.25
    G.K. Reeves, H.B. Harrison: Obtaining the specific contact resistance from transmission line model measurements. IEEE EDL-3, 111–113 (1982)Google Scholar
  6. 7.26
    E. Kasper, H. Kibbel F. Schäffler: An industrial single-slice Si-MBE apparatus. J. Electrochem. Soc., 136, 1154–1158, (1989)CrossRefGoogle Scholar
  7. 7.27
    H. Jorke, H. Kibbel: Doping by secondary implantation. J. Electrochem. Soc., 133, 774–778, (1986)CrossRefGoogle Scholar
  8. 7.28
    H. Kibbel, E. Kasper, P. Narozny, HU. Schreiber: Boron doping of SiGe base of heterobipolar transistor. Thin Sol. Films, 184, 163–169 (1990)CrossRefGoogle Scholar
  9. 7.29
    E. Kasper, F. Schäffler: Low temperature molecular beam epitaxy of silicon (Si-MBE). Physica Scripta, T 29, 147–151 (1989)CrossRefGoogle Scholar
  10. 7.30
    P.H. Singer: Trends in wafer cleaning. Semiconductor Int. 15, No. 13, 36–39 (1992)Google Scholar
  11. 7.31
    W. Kern, A.D. Puotinen: Cleaning solutions based on hydrogen peroxide for use in semiconductor technology. RCA Rev. 31, 187–206 (1970)Google Scholar
  12. 7.32
    K.M. Strohm, J.F. Luy, J. Buechler, F. Schäffler, A. Schaub: Planar 100 GHz silicon detector circuits. Microelectronic Eng., 15, 285–288 (1991)CrossRefGoogle Scholar
  13. 7.33
    K.M. Strohm, J. Buechler, J.F. Luy: 90 GHz SIMMWIC rectennas. 22nd Europ. Microwave Conf. (1992), pp. 608–613Google Scholar
  14. 7.34
    U. Güttich, K.M. Strohm, F. Schäffler: D-band subharmonic mixer with silicon planar doped barrier diodes. IEEE Trans. MTT-39, 366–368 (1991)Google Scholar
  15. 7.35
    J.F. Luy, K.M. Strohm, J. Buechler: A 91 GHz Si/SiGe resonant tunneling detector. Archiv Elektr. Übertrg., 46, 370–373 (1992)Google Scholar
  16. 7.36
    K.M. Strohm, J. Buechler, J.F. Luy, F. Schäffler: A silicon technology for active high frequency circuits. Microelectronic Eng. 19, 717–720 (1992)CrossRefGoogle Scholar
  17. 7.37
    A. Gruhle, H. Kibbel, U. König, U. Erben, E. Kasper: MBE grown Si-SiGe HBT’s with high β, f T and f max. IEEE EDL-13, 206–208 (1992)Google Scholar
  18. 7.38
    L.K. White: Positive-resist processing for step-and-repeat optical lithography. RCA Rev., 47, 345–379 (1986)Google Scholar
  19. 7.39
    K.M. Strohm, J. Hersener, H.J. Herzog: Stress compensated Si-membrane masks for X-ray lithography with synchrotron radiation. Eurocon 86 Proc, Paris, Paper AI.4 (1986)Google Scholar
  20. 7.40
    K.M. Strohm, J. Hersener, E. Piper: X-ray lithography for monolithic millimeter wave integration. Microcircuit Eng. 9, 131–134 (1989)CrossRefGoogle Scholar
  21. 7.41
    W. Kern: Chemical etching of silicon, germanium, gallium arsenide and gallium phosphide. RCA Rev. 39, 278–309 (1978)Google Scholar
  22. 7.42
    D.M. Manos, D.L. Flamm,(eds.): Plasma Etching-An Introduction. (Academic, Boston 1989)Google Scholar
  23. 7.43
    H. Linde, L. Austin: Wet silicon etching with aqueous amine gallates. J. Electrochem. Soc. 139, 1170–1174 (1992)CrossRefGoogle Scholar
  24. 7.44
    G.M. Rebeiz, L.P.B. Katehi, W.Y. Ali-Ahmad, G.V. Eleftheriades, C.C. Ling: Integrated horn antennas for millimeter-wave applications. Radioscientist 3, 68–77 (1992)Google Scholar
  25. 7.45
    K.E. Peterson: Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982)CrossRefGoogle Scholar
  26. 7.46
    G.W. Turner, C.L. Chen, M.K. Connors, L.J. Mahoney, W.L. McGilvary: Selective Plasma Etching of Si from GaAs-on Si wafers for microwave via-hole formation. Electron. Lett. 26, 854–855 (1990)CrossRefGoogle Scholar
  27. 7.47
    J.M. Poate: Diffusion and reactions in gold films. Sol. State Tech., 227–234 (April 1982)Google Scholar
  28. 7.48
    N.H.L. Koster, S. Koßlowski, R. Bertenburg, S. Heinen and I. Wolff: Investigations on air bridges used for MMICs in CPW technique. 19th Europ. Microwave Conf. (1989) pp. 666–671Google Scholar
  29. 7.49
    J.K. Singh, O.P. Daga, H.S. Kothari, B.R. Singh, W.S. Khokle: Air bridge and via hole technology for GaAs based microwave devices. Microelectr. J. 19, 23–27 (1988)CrossRefGoogle Scholar

Section 7.3

  1. 7.50
    J.M. Dieudonné, B. Adelseck, K.-E. Schmegner, R. Rittmeyer, A. Colquhoun: Technology related design of monolithic millimeter wave Schottky diode mixers. IEEE Trans. MTT-40, 1466–1474 (1992)Google Scholar
  2. 7.51
    J. Hersener, E. Piper, A. Wilhelm, G. Birkenstock: Application of X-ray lithography for manufacturing a metal-oxide semiconductor field effect transistor tetrode, J. Vac. Sci. Technol. B 5, 253–256 (1987)CrossRefGoogle Scholar
  3. 7.52
    S.M. Sze: Physics of Semiconductor Devices. (Wiley, New York 1981)Google Scholar
  4. 7.53
    K.M. Strohm, J.F. Luy, J. Buechler, J. Hersener, H. Kibbel, F. Schäffler, A. Schaub, A. Wilhelm: Submikron-Technologie für Millimeterwellensensoren auf hochohmigem Silizium. BMFT-Abschlußbericht NT 2769C0 (1991)Google Scholar
  5. 7.54
    J.F. Luy, K.M. Strohm, J. Büchler: Monolithic Si/SiGe millimeter-wave detector circuits. Int. Semicon. Dev. Res. Symp. (December 1991), pp. 155–158Google Scholar
  6. 7.55
    B. Bayraktaroglu: Monolithic IMPATT technology. Microwave J. 73–86 (April 1989)Google Scholar
  7. 7.56
    M. Kuisl, U. König, F. Schäffler, R. Lossos: Characterization of MBE-grown polysilicon, in Polycrystalline Semiconductors, ed. by H.J. Möller, H.P. Strunk, J.H. Werner, Springer Proc. Phys 35, 192–197, (Springer, Berlin, Heidelberg 1989)Google Scholar
  8. 7.57
    A.K. Sharma: Solid-state control devices: State of the art. Microwave J., 95–112 (1989)Google Scholar
  9. 7.58
    P.J. Stabile, A. Rosen, P.R. Herczfeld: Optically controlled lateral PIN diodes and microwave control circuit. RCA Rev. 47, 443–456 (1986)Google Scholar

Section 7.4

  1. 7.59
    S.M. Sze: High Speed Semiconductor Devices. (Wiley, New York 1990)Google Scholar
  2. 7.60
    R.-H. Yan, K.F. Lee, D.Y. Jeon, Y.O. Kim, B.G. Park, M.R. Pinto, C.S. Rafferty, D.M. Tennant, E.H. Westerwick, G.M. Chin, M.D. Morris, K. Early, P. Mulgrew, W.M. Mansfield, R.K. Watts, A.M. Voshschenkov, J. Bokor, R.G. Swartz, A. Ourmazd: 89-GHz f T room-temperature silicon MOSFETs. IEEE EDL-13, 256–258 (1992)Google Scholar
  3. 7.61
    T. Gomi et al.: A sub-30 psec Si bipolar LSI technology. IEDM Techn. Dig. (1988) pp. 744–747Google Scholar
  4. 7.62
    M. Sugiyama et al.: A 40 GHz f T Si bipolar LSI technology. IEDM Techn. Dig. (1989) pp.221–224Google Scholar
  5. 7.63
    M. Namba T. Kobayashi, T. Uchino, T. Nakamura, M. Kondo, Y. Tamaki, S. Iijima, T. Kure, M. Tanabe: A 64 GHz Si bipolar transistor using in-situ phosphorus doped polysilicon emitter technology. IEDM Techn. Dig. (1991) pp. 443–446Google Scholar
  6. 7.64
    G.L. Patton, J.H. Comfort, B.S. Meyerson, e.F. Crabbé, G.J. Scilla, E. de Fresart, J.M.C. Stork, J.Y.-C. Sun, D.L. Harame, J.N. Burghartz: 75 GHz f T SiGe-base heterojunction bipolar transistors. IEEE EDL-11, 171–173 (1990)Google Scholar
  7. 7.65
    A. Gruhle, H. Kibbel, U. Erben, E. Kasper: 91 GHz SiGe-HBT’s grown by MBE. Electronics Lett. 29, 415–417 (1993)CrossRefGoogle Scholar
  8. 7.66
    L. Treitinger, M. Miura-Mattauch (eds.): Ultra-Fast Silicon Bipolar Technology. Springer Ser. Electron. Photon. Vol. 27, (Springer, Berlin, Heidelberg 1988)Google Scholar
  9. 7.67
    S.A. Campbell, A. Gopinath: Modeling of Ge-Si heterojunction bipolar transistors for use in silicon monolithic millimeter-wave integrated circuits. IEEE Trans. MTT-37, 2046–2050 (1989)Google Scholar
  10. 7.68
    A. Gruhle, H. Kibbel, E. Kasper: The influence of MBE-layer design on the high frequency performance of Si/SiGe HBTs. Microelectronic Eng. 19, 435–438 (1992)CrossRefGoogle Scholar
  11. 7.69
    U. König: Electronic Si/SiGe devices: basics, technology, performance. Festkörperproblem/ Advances in Solid State Physics, 32, 199–220 (Vieweg, Braunschweig 1992)Google Scholar
  12. 7.70
    U. Güttich, J.F. Luy, A. Gruhle: A Si-SiGe HBT dielectric resonator stabilized microstrip oscillator at X-band frequencies. IEEE Microwave and Guided Lett. 2, 281–283 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • K. M. Strohm
    • 1
  1. 1.Daimler Benz Research CenterUlmGermany

Personalised recommendations