Advertisement

Vergleich der biologischen Resistenzbestimmung von HIV-Stämmen gegenüber Azidothymidin (AZT) mit der Sequenzanalyse des Polymerasegens

  • M. Wichers
  • A. Ackermann
  • A. Meyer
  • R. Rolf
  • R. Kaiser
  • H. H. Brackmann
  • J. Oldenburg
  • J. Rockstroh
  • R. Bialek
  • B. Matz
  • K. E. Schneweis
Conference paper

Zusammenfassung

Hauptangriffspunkt der antiviralen Chemotherapie der HIV-Infektion ist bis heute die reverse Transkriptase (RT), ein Teilprodukt des HIV Polymerasegens, mit dem Ziel, durch die Hemmung der reversen Transkription die Neuinfektion von Zellen zu verhindern. Die Reverse Transkriptase stellt eine strukturelle und funktionelle Einheit aus einer RNA-abhängigen DNA-Polymerase und einer Ribonuklease-H dar [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Johnson MS, McClure MA, Feng D-F et al (1988) Computer analysis of retroviral pol genes: Assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc Natl Acad Sci USA 83: 7648–7652CrossRefGoogle Scholar
  2. 2.
    Preston BD, Poiesz BJ, Loeb LA (1989) Fidelity of HIV-1 reverse transcriptase. Science 242: 1168–1171CrossRefGoogle Scholar
  3. 3.
    Roberts JD, Bebenek K, Kunkel TA (1988) The accuracy of reverse transcriptase from HIV-1. Science, 242: 1171–1173PubMedCrossRefGoogle Scholar
  4. 4.
    Zimmerman TP, Mahony WB, Prus KL (1987) 3’-Azido-3’-desoxythymidine (An unusual nucleoside analogue that permeates the membrane of human erythrocytes and lymphocytes by nonfacilitated diffusion. J Biol Chem 262: 5748–5754PubMedGoogle Scholar
  5. 5.
    Furman PA, Fyfe JA, St Clair MH et al (1986) Phosphorylation of 3’-azido-3’-desoxythymidine and selective interaction of the 5’-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA, 83: 83333–8337Google Scholar
  6. 6.
    Levantis P, Oxford JS (1992) Molecular aspects of AZT resistance in HIV I. Res Virol 143: 136–142PubMedCrossRefGoogle Scholar
  7. 7.
    Boucher CA, O’Sullivan E, Mulder JW et al (1992) Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive subjects. J Infect Dis, 165: 105–110PubMedCrossRefGoogle Scholar
  8. 8.
    Gao Q, Gu Z, Parniak MA et al (1992) In vitro selection of variants of human immunodeficiency virus type 1 resistant to 3’-azido-3’-desoxythymidine and 2’,3’-didesoxyinosine. J Virol 66: 12–19PubMedGoogle Scholar
  9. 9.
    Kellam, SD, Boucher CA, Larder BA (1992) Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc Natl Acad Sci USA, 89: 1934–1938PubMedCrossRefGoogle Scholar
  10. 10.
    Larder BA, Kemp SD (1989) Multiple mutations in HIV-l reverse transcriptase confer high level resistance. Science 246: 1155–1158PubMedCrossRefGoogle Scholar
  11. 11.
    Larder BA, Kellam P, Kemp SD (1991) Zidovudine resistance predicted by direct detection of mutations in DNA from HIV-infected lymphocytes. AIDS 5: 137–144PubMedCrossRefGoogle Scholar
  12. 12.
    St Clair MH, Martin JL, Tudor-Williams, G, Bach MC, Vavro CL, King DM, Kellam P, Kemp SD, Larder BA (1991) Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science 253: 1557–1559PubMedCrossRefGoogle Scholar
  13. 13.
    Wahlberg J, Albert J, Lundeberg J et al (1992) Dynamic changes in HIV-1 quasispecies from azidothymidine (AZT)-treated patients. FASEB 6: 2843–2847Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • M. Wichers
  • A. Ackermann
  • A. Meyer
  • R. Rolf
  • R. Kaiser
  • H. H. Brackmann
  • J. Oldenburg
  • J. Rockstroh
  • R. Bialek
  • B. Matz
  • K. E. Schneweis

There are no affiliations available

Personalised recommendations