Microbial mats in a thermomineral sulfurous cave

  • Serban M. Sarbu
  • Luminita Vlasceanu
  • Radu Popa
  • Peter Sheridan
  • Brian K. Kinkle
  • Thomas C. Kane
Part of the NATO ASI Series book series (volume 35)

Abstract

The thermomineral sulfurous waters at Mangalia in southeastern Dobrogea, Romania, have been known and used as spa facilities for well over 2,000 years (Feru and Capotà 1991). Hydrogeologieal studies performed during the last 60 years (Macovei 1912; Ciocîrdel and Protopopescu-Pache 1955; Moissiu 1968; Feru and Capotà 1991) identified a deep captive sulfurous aquifer located in Barremian-Jurassic limestones, extending 15 km to the North and 50 km to the South of Mangalia. In the Mangalia region, a system of geological faults allows the deep water to ascend toward the surface and mix with the Sarmatian oxygenated waters (Lascu et al. 1993). The biological investigation of the subsurface ecosystems associated with the sulfurous waters at Mangalia commenced in the late eighties, after the discovery of Movile Cave and its unique subterranean chemoautotrophically based ecosystem (Sarbu, 1990).

Keywords

Biomass Sulfide Hydrocarbon Sulfuric Acid Bicarbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  2. Ciocîrdel R, Protopopescu-Pache E (1955) Consideraţii hidrogeologice asupra Dobrogei. Studii tehnice şi economice. Seria E 3 hidrogeologie pp 1–49Google Scholar
  3. Egemeier SJ (1981) Cavern development by thermal waters. NSS Bull 43:31–51Google Scholar
  4. Feru MU, Capotà A (1991) Les eaux thermominérales karstiques de la zone de Mangalia (Roumanie). Theor Appl Karstol 4:143–157Google Scholar
  5. Findlay RH, King GM, Watling L (1989) Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl Environ Microbiol. 55:2888–2893Google Scholar
  6. Lascu C (1989) Paleogeographical and hydrogeological hypothesis regarding the origin of a peculiar cave fauna. Mics speol Rom 1:13–18Google Scholar
  7. Lascu C, Popa R, Sarbu SM, Vlasceanu L, Prodan S (1993) La grotte de Movilé: une faune hors du temps. La Recherche 258:1092–1098Google Scholar
  8. Macovei G (1912) Cîteva observaţiuni asupra hidrogeologiei subterane în Dobrogea de Sud. Dari de Seama Instit Geol Rom III. pp 123.Google Scholar
  9. McKinley VL, Federle TW, Vestal JR (1982) Effects of hydrocarbons on plant litter mierobiota of an Arctic lake. Appl Environ Microbiol. 43:129–135Google Scholar
  10. Moissiu C (1968) Consideraţii hidrochimice privind apele freatice din Dobrogea de Sud. Hidrotehnica Gospodarirea Apelor Meteorologia. 13:417–420Google Scholar
  11. Sarbu S (1990) The unusual fauna of a cave with thermomineral waters containing H2S, from southern Dobrogea, Romania. Memoires de Biospeologie. XVII: 191–195Google Scholar
  12. Sarbu SM, Popa R (1992) A unique chemoautotrophically based cave ecosystem. In: Camacho A (ed) The Natural History of Biospeleology. Luis Arguero Publ. Madrid pp 637–666Google Scholar
  13. Sarbu SM, Popa R, Goliat I (1991) Chemoautotrophic production in a thermomineral sulfurous cave. Trav Inst Speol XXX:59–61Google Scholar
  14. Tabita FR, Caruso P, Whitman W (1978) Facile assay of enzymes unique to the Calvin cycle in intact cells with special references to ribulose 1,5-bisphosphate carboxylase. Anal Biochem 84:462–472CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Serban M. Sarbu
    • 1
  • Luminita Vlasceanu
    • 1
  • Radu Popa
    • 1
    • 2
  • Peter Sheridan
    • 1
  • Brian K. Kinkle
    • 1
  • Thomas C. Kane
    • 1
  1. 1.Department of Biological Sciences (ML-6)University of CincinnatiCincinnatiUSA
  2. 2.“E. Racoviţa” Speleological InstituteBucharestRomania

Personalised recommendations