Microbial Mats pp 377-392 | Cite as

Diversity of and interactions among sulphur bacteria in microbial mats

  • Rutger de Wit
  • Pierre Caumette
Part of the NATO ASI Series book series (volume 35)


Microbial mats are found along the outflow of continental thermal springs, on marine littoral sediments, in thalassic and athalassic (inland) hypersaline ponds and lakes, and in the deep-sea along hydrothermal vents. Hydrothermal vent microbial mats consist of chemotrophic sulphur bacteria thriving in the dark on sulphide which is mainly supplied by geochemical processes. However, it has been shown that sulphate reduction in these systems does occur up to 110 °C (Jørgensen et al. 1992), thus indicating that complete sulphur cycling also takes place. Microbial mats that are exposed to sunlight often comprise dense populations of oxygenic and anoxygenic phototrophic microorganisms together with chemoorganotrophs and chemolithotrophs. In habitats where the sulphur cycling is not a dominant process, microbial mats often originate from an association of cyanobacteria with anoxygenic filamentous phototrophic bacteria. For example, in thermal mats, it was shown that the Chloroflexus-like filamentous bacteria incorporated glycolate which was a major excretion product of the cyanobacteria found in the same mats (Bateson and Ward 1988). This commensalistic relationship is a nice example of a positive interaction of two organisms coexisting in the same environment. In other microbial mat environments, sulphide oxidation plays a predominant role. In the absence of geochemically formed sulphide, sulphide formation results mainly from the activities of sulphur and sulphate-reducing bacteria. In this paper, we discuss the biodiversity of sulphur bacteria and their ecological interactions in microbial mats.


Hydrothermal Vent Green Sulphur Bacterium Phototrophic Bacterium Hypersaline Environment Colourless Sulphur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bateson MM, Ward DM (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54: 1738–1743Google Scholar
  2. Caumette P, Baulaigue R, Matheron R (1988) Characterization of Chromatium salexigens sp nov, a halophilic Chromatiaceae isolated from Mediterranean Salinas. System Appl Microbiol 10: 284–292Google Scholar
  3. Caumette P (1989) Ecology and general physiology of anoxygenic phototrophic bacteria in benthic environments In: Cohen Y, Rosenberg E (eds) Microbial Mats; Physiological Ecology of Benthic Microbial Communities ASM, Washington DC, pp 283–304Google Scholar
  4. Caumette P, Baulaigue R, Matheron R (1991a) Thiocapsa halophila sp nov, a new halophilic phototrophic purple sulfur baeterium.Arch Microbiol 155: 170–176CrossRefGoogle Scholar
  5. Caumette P, Cohen Y, Matheron R (1991b) Desulfovibrio halophilus sp nov, a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst Appl Microbiol 13: 33–38Google Scholar
  6. Caumette P, Matheron R, Raymond N, Relexans, J-C (in press) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol EcolGoogle Scholar
  7. Cohen Y, De Jonge I, Kuenen JG (1979) Excretion of glycolate by Thiobacillus neapolitanus grown in continuous culture. Arch Microbiol 122: 189–194CrossRefGoogle Scholar
  8. D’Amelio ED, Cohen Y, Des Marais DJ (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline microbial mats. Arch Microbiol 147: 213–220CrossRefGoogle Scholar
  9. De Wit R (1989) Interactions between phototrophic bacteria in marine sediments. PhD-thesis, University of GroningenGoogle Scholar
  10. De Wit R, Van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45, 117–126CrossRefGoogle Scholar
  11. De Wit R, Jonkers HM, Van den Ende FP, Van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J of Sea Res 23: 271–281CrossRefGoogle Scholar
  12. De Wit R, Van Gemerden H (1990a) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76CrossRefGoogle Scholar
  13. De Wit R, Van Gemerden H (1990b) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154: 459–464CrossRefGoogle Scholar
  14. De Wit R, Grimait JO (1992) Microbial ecosystems in Spanish coastal Salinas; an ecological and geochemical study of biomarkers. Limnetica 8: 205–212Google Scholar
  15. Durand P, Reysenbach A-L, Prieur D, Pace N (1993) Isolation and characterization of Thiobacillus hydrothermalis sp nov, a meesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159: 39–44CrossRefGoogle Scholar
  16. Elsgaard L, Guezennec J, Benbouzid-Rollet N, Prieur D (1991) Fatty acid composition of sulfate-reducing bacteria isolated from deep-sea hydrothermal vents (13°N, East Pacific Rise) Kieler Meeresforsch, Sonderh 8, 182–187Google Scholar
  17. Garcia D, Parot P, Vermeglio A, Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur bacterium Chromatium tepidum. Biochim Biophys Acta 850: 390–395CrossRefGoogle Scholar
  18. Giovannoni SJ, Revsbech NP, Ward DM, Castenholz RW (1987) Obligate phototrophic Chloroflexus: Primary production in anaerobic hot spring microbial mats. Arch Microbiol 147: 80–87CrossRefGoogle Scholar
  19. Gottschal JC, De Vries S, Kuenen JG (1979) Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates. Arch Microbiol 121: 241–249CrossRefGoogle Scholar
  20. Gundersen JK, Jørgensen BB, Larsen E, Jannasch HW (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360: 454–455CrossRefGoogle Scholar
  21. Heyer H, Krumbein WE (1991) Excretion and fermentation products in dark and anaerobically incubated cyanobacteria. Arch Microbiol 155: 284–287CrossRefGoogle Scholar
  22. Hof T (1935) Investigations concerning bacterial life in strong brines. Extrait du Recueil des Traveaux Botaniques Néerlandais 32: 92–173Google Scholar
  23. Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to the anoxic-oxic interface. Phil Trans R Soc London B298: 543–561Google Scholar
  24. Jørgensen BB, Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microbiol Ecol 16: 133–147CrossRefGoogle Scholar
  25. Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulphate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258: 1756–1757CrossRefGoogle Scholar
  26. Kuenen JG, Robertson LA, Van Gemerden H (1985) Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. In: Marshall KC (ed) Advances in Microbial Ecol Vol 8 Plenum Press, New York, pp 1–59Google Scholar
  27. Larsen M, Mack EE, Pierson BK (1991) Mesophilic Chloroflexus-like organisms from marine and hypersaline environments. Abstr VII Int Symp Photosynthetic Prokaryotes, Amherst, USA, pp 169Google Scholar
  28. Leadbetter ER (1974) Beggiatoaceae. In: Buchanan RE and Gibbons NE (eds) Bergey’s Manual of determinative bacteriology, 8th ed The Williams & Wilkins Co, Baltimore, pp 112–116Google Scholar
  29. Mack EE, Pierson BK (1988) Preliminary characterization of a temperate marine member of the Chloroflexaceae. In: Olsen JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green Photosynthetic Bacteria. Plenum Publ Corp, New York, pp 237–241CrossRefGoogle Scholar
  30. Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315CrossRefGoogle Scholar
  31. Madigan MT (1986) Chromatium tepidum sp nov, a thermophilic photosynthetic bacterium of the family of the Chromatiaceae. Int J of Syst Bact 36: 222–227CrossRefGoogle Scholar
  32. Mezzino MJ, Strohl WR, Larkin JM (1984) Characterization of Beggiatoa alba. Arch Microbiol 137: 139–144CrossRefGoogle Scholar
  33. Nelson DC, Wirson CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp abundant at hydrothermal vents in the Guaymass basin. Appl Environ Microbiol 55: 2909–2917Google Scholar
  34. Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364CrossRefGoogle Scholar
  35. Oren A, Kessel M, Stackebrandt E (1989) Ectothiorhodospira marismortui, sp nov, an obligately anaerobic, moderately halophilic purple sulphur bacterium from a hypersaline spring on the shore of the Dead Sea. Arch Microbiol 151: 524–529CrossRefGoogle Scholar
  36. Overman J, Pfennig N (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158: 59–67CrossRefGoogle Scholar
  37. Overmann J, Fischer U, Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen nov and sp nov. Arch Microbiol 157: 329–335CrossRefGoogle Scholar
  38. Pierson BK, Sands VM, Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered microbial mat. Appl Environ Microbiol 56: 2327–2340Google Scholar
  39. Thomas JC (1984) Formations benthiques à Cyanobacteries des salins de Santa Pola (Espagne): composition spécifique, morphologie et caractéristiques biologiques des principaux peuplements. Rev Invest Geol 38–39: 139–158Google Scholar
  40. Van den Ende F, Van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13: 69–78CrossRefGoogle Scholar
  41. Van Gemerden H (1968) On the ATP generation of Chromatium in darkness. Arch Mikrobiol 64: 118–124CrossRefGoogle Scholar
  42. Visscher FT, Prins RA, Van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Ecol 86: 283–294CrossRefGoogle Scholar
  43. Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp nov. Arch Microbiol 156: 81–90CrossRefGoogle Scholar
  44. Welsh DT, Herbert RA (1993) Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotic stress using natural abundance 13C nuclear magnetic resonance spectroscopy. FEMS Microbiol Ecol 13: 145–150CrossRefGoogle Scholar
  45. Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp nov, a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156: 277–280CrossRefGoogle Scholar
  46. Wood AP, Burke CB, Knott B, Kelly DP (1991) Chemolithotrophic sulfur bacteria in sediments, mats, and stromatiles of Western Australian saline lakes. Geomicrobiol J 9: 41–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Rutger de Wit
    • 1
    • 2
  • Pierre Caumette
    • 1
  1. 1.Laboratoire d’Océanographie BiologiqueUniversité de Bordeaux IArcachonFrance
  2. 2.U.R.A. 197Centre National de Recherche Scientifique (C.N.R.S.)France

Personalised recommendations