Advertisement

Microbial Mats pp 339-352 | Cite as

Relationships between functional groups of organisms in microbial mats

  • Frank P. van den Ende
  • Hans van Gemerden
Part of the NATO ASI Series book series (volume 35)

Abstract

Microbial mats develop under a wide range of environmental conditions, and can be found in hypersaline coastal lagoons, hot springs, alkalinelakes, and marine intertidal flats (Cohen 1984, 1989; Jørgensen and Cohen 1977; Javor and Castenholz 1981, 1984; Jørgensen et al. 1983; Bauld 1984; Stal et al. 1985; Nicholson et al. 1987; Pierson et al. 1987). These laminated ecosystems characteristically are dominated by only a few functional groups of microbes. The driving force of most microbial mats is photosynthesis by cyanobacteria (CyaB) and algae. Subsequently, dissimilatory sulfate-reducing bacteria (SRB), using excretion-, lysis-, and decomposition products of CyaB, produce sulfide. The sulfide can be reoxidized to sulfate by colorless sulfur bacteria (CSB) and purple sulfur bacteria (PSB). Aerobic heterotrophic organisms are functionally important as their activity leads to oxygen depletion, and fermentative organisms provide growth substrates for SRB. In microbial mats these metabolically different groups of microbes live together in a layer of 5–10 mm thickness. Their combined metabolic activities result in steep environmental microgradients, particularly of oxygen and sulfide. Sulfide is inhibitory for most oxygenic phototrophs. Sulfide production immediately underneath the layer of CyaB might inhibit their growth, and, consequently, that of the entire ecosystem. On the other hand, anaerobic PSB and SRB are hampered by oxygen.

Keywords

Oxygenic Photosynthesis Purple Sulfur Bacterium Benthic Microbial Community Anoxygenic Photosynthesis Sulfide Removal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauld J (1984) Microbial mats in marginal marine environments: Shark Bay, Western Australia, and Spencer Gulf, South Australia. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial Mats: Stromatolites. Liss, New York, pp 39–58Google Scholar
  2. Bogorov LV (1974) About the properties of Thiocapsa roseopersicina strain BBS isolated from the estuary of the White Sea. Microbiology 43: 275–280Google Scholar
  3. Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473CrossRefGoogle Scholar
  4. Cohen Y (1984) Oxygenic photosynthesis, anoxygenic photosynthesis, and sulfate reduction in cyanobacterial mats. In: Klug MJ, Reddy CA (eds) Current Perspectives in Microbial Ecology. ASM Washington DC, pp 435–441Google Scholar
  5. Cohen Y (1989) Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sulfur interactions. In: Cohen Y, Rosenberg E (eds) Microbial Mats. Physiological Ecology of Benthic Microbial Communities. ASM Washington DC, pp 22–36Google Scholar
  6. Cohen Y, Jøgensen BB, Padan E, Shilo M (1975a) Sulfide dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257: 489–492CrossRefGoogle Scholar
  7. Cohen Y, Padan E, Shilo M (1975b) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. J Bacterid 123: 855–861Google Scholar
  8. De Wit R, Van Gemerden H (1987a) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45: 117–126CrossRefGoogle Scholar
  9. De Wit R, Van Gemerden H (1987b) Oxidation of sulfide to thiosulfate by Microcoleus chthonoplastes. FEMS Microbiol Ecol: 45: 7–13CrossRefGoogle Scholar
  10. De Wit R, Van Gemerden H (1990a) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76CrossRefGoogle Scholar
  11. De Wit R, Van Gemerden H (1990b) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154: 459–464CrossRefGoogle Scholar
  12. De Wit R, Jonkers HM, Van den Ende FP, Van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J Sea Res 23: 271–281CrossRefGoogle Scholar
  13. De Wit R, Van Boekel WHM, Van Gemerden H (1988) Growth of the cyanobacterium Microcoleus chthonoplastes on sulfide. FEMS Microbiol Ecol 53: 203–209CrossRefGoogle Scholar
  14. Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71: 123–128Google Scholar
  15. Garlick S, Oren A, Padan E (1977) Occurrence of facultative anoxygenic photosynthesis among filamentous unicellular cyanobacteria. J Bacteriol 129: 623–29Google Scholar
  16. Javor BJ, Castenholz RW (1981) Laminated microbial mats, Laguna Guerrero Negro, Mexico. Geomicrobiol J 3: 237–273CrossRefGoogle Scholar
  17. Javor BJ, Castenholz RW (1984) Invertebrate grazers of microbial mats. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial Mats: Stromatolites. Liss, New York, pp 85–94Google Scholar
  18. Jørgensen BB (1988) Ecology of the sulphur cycle: oxidative pathways in sediments. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge, pp 31–63Google Scholar
  19. Jørgensen BB (1989) Light penetration, absorption, and action spectra in cyanobacterial mats In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. ASM Washington, pp 123–137Google Scholar
  20. Jørgensen BB, Cohen Y (1977) Solar Lake (Sinai) 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol Oceanogr 22: 657–666CrossRefGoogle Scholar
  21. Jørgensen BB, Des Marais DJ (1986) A simple fiberoptic microprobe for high resolution light measurements: application in marine sediments. Limnol Oceanogr 31: 1376–1383CrossRefGoogle Scholar
  22. Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities Limnol Oceanogr 28: 1075–1093CrossRefGoogle Scholar
  23. Kämpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135CrossRefGoogle Scholar
  24. Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans R Soc Lond B298: 499–529Google Scholar
  25. Lassen C, Ploug H, Jørgensen BB (1992) A fibre-optic scalar irradiance microsensor: application for spectral light measurements in sediments. FEMS Microbiol Ecol 86: 247–254CrossRefGoogle Scholar
  26. Nicholson JA, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364CrossRefGoogle Scholar
  27. Padan E (1979) Impact of facultatively anaerobic phototrophic metabolism on ecology of cyanobacteria (blue-green algae) In: Alexander M (ed) Adv Microbial Ecol, Plenum New York, pp 1–48Google Scholar
  28. Pierson BK, Oesterle A, Murphy GL (1987) Pigments, light penetration, and photosynthetic activity in the multi-layered microbial mats of Great Sippewissett Salt Marsh, Massachusetts.FEMS Microbiol Ecol 45: 365–376CrossRefGoogle Scholar
  29. Schaub BEM, Van Gemerden H (1993) Simultaneous phototrophic and chemotrophic growth in the purple sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecolin pressGoogle Scholar
  30. Skyring GW, Lynch RM, Smith GD (1989) Quantitative relationship between carbon, hydrogen, and sulfur metabolism in cyanobacterial mats. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiological ecology of benthic microbial communities. ASM Washington, pp 170–179Google Scholar
  31. Skyring GW (1984) Sulfate reduction in marine sediments associated with cyanobacterial mats in Australia. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: stromatolites. Liss, New York, pp 265–275Google Scholar
  32. Stal LJ (1991) The metabolic versatility of the mat-building cyanobacteria Microcoleus chthonoplastes and Oscillatoria limosa and its ecological significance. Algol Stud 64: 453–467Google Scholar
  33. Stal LJ, Heyer H, Bekker S, Villbrandt M, Krumbein WE (1989) Aerobic-anaerobic metabolism in the cyanobacterium Oscillatoria limosa In: Cohen Y, Rosenberg E (eds) Microbial Mats: Physiological Ecology of Benthic Microbial Communities. ASM Washington DC, pp 255–276Google Scholar
  34. Stal LJ, Van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol 31: 111–125CrossRefGoogle Scholar
  35. Van den Ende FP, Van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13: 69–78CrossRefGoogle Scholar
  36. Visscher PT, Prins RA, Van Gemerden H (1992a) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Ecol 86: 283–294CrossRefGoogle Scholar
  37. Visscher PT, Van den Ende FP, Schaub BEM, Van Gemerden H (1992b) Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiol Ecol 101: 51–58Google Scholar
  38. Visscher PT, Nijburg JW, Van Gemerden H (1990) Polysulfide utilization by Thiocapsa roseopersicina. Arch Microbiol 155: 75–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Frank P. van den Ende
    • 1
  • Hans van Gemerden
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations