Advertisement

Microbial Mats pp 255-263 | Cite as

Cycling of carbon, sulfur, oxygen and nutrients in a microbial mat

  • Donald E. Canfield
  • David J. Des Marais
Part of the NATO ASI Series book series (volume 35)

Abstract

Microbial mats are among the most productive aquatic ecosystems on Earth, yet, in many cases, the waters from which they grow are depleted in the basic nutrient elements. How, then, are nutrients cycled to allow for such high rates, and what ultimately controls these rates? To begin to address these issues, the cycling of carbon, oxygen, sulfur and nutrients has been explored over several years in Microcoleus chtholoplastes-dominated cyanobacterial mats from the hypersaline salt ponds in Guerrero Negro, Baja California Sur, Mexico (D’Amelio et al. 1989; Canfield and Des Marais 1993).

Keywords

Sulfate Reduction Dissolve Inorganic Carbon Sulfide Oxidation Oxygenic Photosynthesis Sulfate Reduction Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bebout BM (1992) Interactions of Nitrogen and Carbon Cycling in Microbial Mats and Stromatolites, PhD Diss, Univ. N. Carolina, Chapel Hill, 187 ppGoogle Scholar
  2. Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473CrossRefGoogle Scholar
  3. Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 57: 3971–3984CrossRefGoogle Scholar
  4. D’Amelio ED, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y, Rosenberg E (eds) Microbial Mats, Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, pp 97–113Google Scholar
  5. Finster K, Bak F (1993) Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, Gram negative, sulfur-reducing eubacteria (1993) Appl Envir Microbiol 59: 1452–1460Google Scholar
  6. Hall POJ, Aller RC (1992) Rapid, small volume, flow injection analysis for ΣCO2 and NH4 + in marine and freshwaters. Limnol Oceanog 37: 1113–1119CrossRefGoogle Scholar
  7. Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28: 153–159CrossRefGoogle Scholar
  8. Jørgensen BB, Des Marais DJ (1986) Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol Ecol 38: 179–186CrossRefGoogle Scholar
  9. Revsbech NP, Jørgensen BB, Blackburn TH (1983) Microelectrode studies of the photosynthesis and O, H2S and pH profiles of a microbial mat. Limnol Oceanogr 28: 1062–1074CrossRefGoogle Scholar
  10. Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Envir Microbiol 59: 101–108Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Donald E. Canfield
    • 1
  • David J. Des Marais
    • 1
    • 2
  1. 1.Max Planck Institute for Marine MicrobiologyBremenGermany
  2. 2.Ames Research CenterMoffett FieldUSA

Personalised recommendations