Skip to main content

Optical properties of microbial mats: Light measurements with fiber-optic microprobes

  • Conference paper
Microbial Mats

Part of the book series: NATO ASI Series ((ASIG,volume 35))

Abstract

Photosynthetie microbial mats occur as dense stratified communities in top layers of sediments, where microorganisms and sediment particles are embedded in an extracellular polymer matrix (e.g., Farbstreifensandwatt, Stal et al. 1985) or growing as a thin photosynthetic biofilm on solid substrata, e.g., stone or plant surfaces (Kühl 1993). In extreme environments, like hypersaline salt marshes and hot springs, regular mats several mm’ to cm’ thick and composed of almost pure biomass and exopolymers develop (Cohen and Rosenberg 1989). Photosynthetic microorganisms are the predominant component of these microbial mats, which often exhibit a vertical stratification of different colored layers due to the presence of photosynthetie microalgae and bacteria containing different photopigments with depth (Nicholson et al. 1987; Pierson et al. 1990). High metabolic rates due to the high density of microorganisms in mats combined with molecular diffusion acting as the major transport mechanism result in steep chemical gradients with depth as has been demonstrated by microelectrode measurements at < 50–100 µm spatial resolution (Revsbech and Jørgensen 1986; Revsbech this volume). Production and consumption of the major electron acceptors can be calculated from measured microprofiles and different functional layers can thus be identified in microbial mats from microelectrode measurements. The typical sequence found is an upper oxygenic photosynthetie layer with concurrent oxygen respiration and a lower anoxic layer with denitrification and sulfate reduction as the predominant respiratory processes and with anoxygenic photosynthesis, provided sufficient light is penetrating from above (Jørgensen et al. 1983; Jørgensen and Des Marais 1986b; Revsbech et al. 1989; Kühl 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Admiraal W (1984). The ecology of estuarine sediment-inhabiting diatoms. Progr Phycol Res 3: 269–322

    Google Scholar 

  • Anderson RR, Beck H, Bruggemann U, Farinelli W, Jaques SL, Parrish JA (1989). Pulsed photothermal radiometry in turbid media: Internal reflection of backscattered radiation strongly influences optical dosimetry. Appl Optics 28: 2256–2262

    Article  Google Scholar 

  • Cohen Y, Rosenberg E (eds.) (1989). Physiological Ecology of Benthic Microbial Communities. Am Soc Microbiol.

    Google Scholar 

  • Colijn F (1982). Light absorption in the waters of the Ems-Dollard estuary and its consequences for the growth of phytoplankton and microphytobenthos. Neth J Sea Res 15: 196–216

    Article  Google Scholar 

  • Garcia-Pichel F, Mechling M, Castenholz RW (1993). Diel migrations of micro-organisms within a benthic, hypersaline mat community. Appl Environ Microbiol, in press

    Google Scholar 

  • Haardt H, Nielsen GÆ (1980) Attenuation measurements of monochromatic light in marinesediments. Oceanol Acta 3: 333–338

    Google Scholar 

  • Fenchel TM, Straarup BJ (1971) Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos 22: 172–182

    Article  Google Scholar 

  • Fukshansky L, Martinez v Remisowsky A, McClendon J, Ritterbusch A, Richter T, Mohr H (1993) Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment. Photochem Photobiol 57 (3)

    Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philos Trans R Soc London Ser B 298: 543–561

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP, Cohen Y (1983) Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnol Oceanogr 28: 1075–1093

    Article  Google Scholar 

  • Jørgensen BB, Des Marais DJ (1986a) A simple fiber-optic microprobe for high resolution light measurements: Application in marine sediment. Limnol Oceanogr 31: 1376–1383

    Article  Google Scholar 

  • Jørgensen BB, Des Marais D J (1986b) Competition for sulfide among colorless and purple sulfur bacteria in a cyanobacterial mat. FEMS Microbiol Ecol 38: 179–186

    Article  Google Scholar 

  • Jørgensen BB, Cohen Y, and Des Marais DJ (1987) Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Appl Environ Microbiol 53: 879–886

    Google Scholar 

  • Jørgensen BB and Des Marais DJ (1988) Optical properties of benthic photosynthetic communities: Fiber-optic studies of cyanobacterial mats. Limnol Oceanogr 33: 99–113

    Article  Google Scholar 

  • Jørgensen BB (1989) Light penetration, absorption and action spectra in cyanobacterial mats. In: Cohen Y, Rosenberg E (eds) Physiological Ecology of Benthic Microbial Communities. Am Soc Microbiol, pp 123–137

    Google Scholar 

  • Kirk JTO (1983) Light and photosynthesis in aquatic ecosystems. Cambridge.

    Google Scholar 

  • Kühl M (1993) Photosynthesis, O2 respiration and sulfur cycling in a cyanobacterial biofilm. In: Guerrero R, Pedrós-Alió C (eds) Trends In Microbial Ecology. Proceedings of the 6′th International Symposium on Microbial Ecology, Barcelona Sept. 6–11 1992. Spanish Society for Microbiology, pp 163–167

    Google Scholar 

  • Kühl M, Jørgensen BB (1992a) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58: 1164–1174

    Google Scholar 

  • Kühl M, Jørgensen BB (1992b) Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector. Limnol Oceanogr 37: 1813–1823

    Article  Google Scholar 

  • Kühl M, Jørgensen BB (1993) The light field of micxobenthic communities: Radiance distribution and microscale optics of sandy coastal sediments. Limnol Oceanogr, in press

    Google Scholar 

  • Lassen C, Ploug H, Jørgensen BB (1992a) A fibre-optic scalar irradiance microsensor: Application for spectral light measurements in sediments. FEMS Microbiol Ecol 86: 247–254

    Article  Google Scholar 

  • Lassen C, Ploug H, Jørgensen, BB (1992b) Microalgal photosynthesis and spectral irradiance in coastal marine sediments of Limfjorden, Denmark. Limnol Oceanogr 37: 760–772

    Article  Google Scholar 

  • Nicholson AM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewisset Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364

    Article  Google Scholar 

  • Pierson BK, Sands VM, Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Environ Microbiol 56: 2327–2340

    Google Scholar 

  • Ploug H, Lassen C, Jørgensen BB (1993) Action spectra of microalgal photosynthesis and depth distribution of spectral scalar irradiance in a coastal marine sediment of Limfjorden, Denmark. FEMS Microbiol Ecol 102: 261–270

    Article  Google Scholar 

  • Revsbech NP, Jørgensen BB (1983) Photosynthesis of benthic microflora measured by the oxygen microprofile method: capabilities and limitations of the method. Limnol Oceanogr 28: 749–756

    Article  Google Scholar 

  • Revsbech NP, Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microb Ecol 9: 293–352

    Google Scholar 

  • Revsbech NP, Christensen PB, Nielsen LP (1989) Microelectrode analysis of photosynthetic and respiratory processes in microbial mats. In: Cohen Y, Rosenberg E (eds) Physiological Ecology of Benthic Microbial Communities. Am Soc Microbiol, pp 153–162

    Google Scholar 

  • Senior JM (1985) Optical fiber communications: Principles and practice. Prentice-Hall

    Google Scholar 

  • Seyfried M (1989) Optical radiation interactions with living tissue In: Diffey BL (ed) Radiation Measurement in Photobiology. Academic Press, London, pp 191–223

    Google Scholar 

  • Stal LJ, van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat FEMS Microbiol Ecol 31: 111–125

    Google Scholar 

  • Star WM, Marijnissen JPA, van Gemert MJC (1987) Light dosimetry: Status and prospects J Photochem Photobiol Ser B 1: 149–167

    Google Scholar 

  • Vogelmann TC, Martin G, Chen C, Buttry D (1991) Fibre optic microprobes and measurement of the light microenvironment within plant tissues Adv Bot Res 18: 255–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kühl, M., Lassen, C., Jørgensen, B.B. (1994). Optical properties of microbial mats: Light measurements with fiber-optic microprobes. In: Stal, L.J., Caumette, P. (eds) Microbial Mats. NATO ASI Series, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78991-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78991-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78993-9

  • Online ISBN: 978-3-642-78991-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics