Advertisement

Mechanism of Oncogene Activation or Antioncogene Inactivation by External Factors

  • Janos Ladik
  • Wolfgang Förner

Abstract

As briefly described in Chapter 1, Busch [1] was the first to postulate the existence of cancer-causing genes in normal cells of higher organisms. Though he did not write explicitly about human oncogenes, he assumed that due to carcinogens binding to proteins, these cancer-causing genes become readable by releasing the proteins which block them and so their information content can initiate cancer in a cell. Nowadays we know that — according to all probability — carcinogens exert their effect first of all through binding to DNA. In a paper, one of the present authors (J.L.) together with Suhai and Seel [2], assuming the existence of human oncogenes, reviewed the different possible local and longrange effects through which a chemical carcinogen bound to DNA can interfere with DNA-protein interactions and in this way with the genetic regulation of the oncogenes. Fig. 5.1 shows this so-called reading error theory of Busch modified in that it is assumed that the carcinogen (C) binds to DNA, but not necessarily only at the site of an oncogene.

Keywords

Conduction Band Valence Band Solitary Wave Chemical Carcinogen Free Charge Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Busch, in Introduction to the Biochemistry of the Cancer Cell, Academic Press, New York, London, 1962.Google Scholar
  2. 2.
    J. Ladik, S. Suhai and M. Seel, Int. J. Quant. Chern. QBS5, 35 (1978).Google Scholar
  3. 3.
    F.A. Cotton, V.W. Day, E.E. Hazen, Jr. and S. Larsen, J. Am. Chern. Soc. 85, 4834 (1973).CrossRefGoogle Scholar
  4. 4.
    R.S. Day, F. Martino and J. Ladik, J. Theor. BioI. 84, 651 (1980).CrossRefGoogle Scholar
  5. 5.
    D. Grunberger, personal communication, 1992.Google Scholar
  6. 6.
    J. Ladik, Physiol. Chern., Phys. and Med. NMR, 22, 229 (1990).Google Scholar
  7. 7.
    I.B. Weinstein, A.M. Jeffrey, K.W. Jenette, S.H. Blobstein, RG. Harvey, C. Harris, H. Autrup, H. Kasai and K. Nakanishi, Science 193, 592 (1976).PubMedCrossRefGoogle Scholar
  8. 8.
    I.B. Weinstein and D. Grunberger, Chemical Carcinogenesis, P. Tso and J. Dipaolo eds., Marcel Dekker Inc., New York, 1974, Part A, p. 217.Google Scholar
  9. 9.
    E. Santos, S.T. Tronick, S.A. Aaronson, S. Pulciani and M. Barbacid, Nature 298,343 (1982). Further references see in Chapter II.PubMedCrossRefGoogle Scholar
  10. 10.
    RB. Setlov, Progress Nucl. Acid Research, Mol. BioI. 8, 257 (1968).CrossRefGoogle Scholar
  11. 11.
    C. Kittel, Introduction to Solid State Physics, J. Wiley, New York, 1971.Google Scholar
  12. 12.
    J. Ladik and S. Suhai in Theoretical Chemistry, ed. C. Thomson (Royal Soc. of Chemistry), Vol. 4. 1981, p. 49Google Scholar
  13. J. Ladik, “Quantum Theory of Polymers as Solids”, Plenum Press, New York, London, 1988.Google Scholar
  14. 13.
    J. Ladik and S. Suhai, Int. J. Quant. Chern. QBS7, 181 (1980).Google Scholar
  15. 14.
    J.F. Gentleman, M.A. Shadbolt-Forbes, lW. Hawkins, J. Ladik and W. Forbes, Mathematical Scientist, 2., 125 (1984).Google Scholar
  16. 15.
    P.-O. Löwdin, Adv. Phys.5, 1 (1956)CrossRefGoogle Scholar
  17. G. Del Re, J. Ladik and G. Biczó, Phys. Rev. 155, 992 (1967)CrossRefGoogle Scholar
  18. J.-M. André, L. Gouverneur and G. Leroy, Int. 1 Quantum Chern. 1,427,451 (1967).CrossRefGoogle Scholar
  19. 16.
    C.C.J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).CrossRefGoogle Scholar
  20. 17.
    S. Suhai, Phys. Rev. B27, 3506 (1983).Google Scholar
  21. 18.
    S. Suhai, Int. J. Quant. Chern. QBSll, (1985).Google Scholar
  22. 19.
    RS. Day and J. Ladik, Int. J. Quant. Chem. 21 917 (1982).CrossRefGoogle Scholar
  23. 20.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefGoogle Scholar
  24. 21.
    Y. Ye and J. Ladik, Phys. Rev. B48, 5120 (1993), and references therein.Google Scholar
  25. 22.
    N.F. Mott and E.A. Davies, Theory of Non-Crystalline Solids, Clarendon Press, Oxford, 1971, p. 215.Google Scholar
  26. 23.
    E. Clementi, Computational Aspects for Large Chemical Systems, Lecture Notes in Chemistry, Springer, London-New York-Heidelberg, 1980, Vol. 19Google Scholar
  27. E. Clementi, G. Corongiu, M. Gratanola, P. Habitz, C. Lupo, P. Otto and D. Vercauteren, Int. J. Quant. Chern. S16, 409 (1982).Google Scholar
  28. 24.
    P. Otto, J. Ladik, G. Corongiu, S. Suhai and W. Forner, J Chern. Phys. 77, 5026 (1982).CrossRefGoogle Scholar
  29. 25.
    S. Suhai and J. Ladik, Acta Chim. Sci. Hung. 82, 67 (1974).Google Scholar
  30. 26.
    S. Suhai, J. Kaspar and J. Ladik, Int. J. Quant. Chern. 17, 995 (1980).CrossRefGoogle Scholar
  31. 27.
    R.S. Day, S. Suhai and J. Ladik, Chern. Phys. 62, 765 (1981).Google Scholar
  32. 28.
    K. Laki and J. Ladik, Int. J. Quant. Chern. QBS3, 51 (1976).Google Scholar
  33. 29.
    F. Beleznay, S. Suhai and J. Ladik, Int. J. Quant. Chern. 20, 683 (1981).CrossRefGoogle Scholar
  34. 30.
    J. Ladik, Int. J. Quant. Chern. QBS3, 237 (1976).Google Scholar
  35. 31.
    J. Ladik and J. Čížek, lnt. J. Quant. Chern. M., 955 (1984).Google Scholar
  36. 32.
    D. Hofmann, L Ladik, W. Forner and P. Otto, J. Phys. Condens. Matter 4, 3883 (1992)CrossRefGoogle Scholar
  37. J. Ladik, D. Hofmann, W. Förner and P. Otto, Physiol. Chern., Phys. and Med. NMR, 24, 227 (1992).Google Scholar
  38. 33.
    See for instance: A.S. Davydov and N.J. Kislukha, Phys. Status Solidi 59, 463 (1973)Google Scholar
  39. A.S. Davydov, Phys. Scripta 20387 (1979).CrossRefGoogle Scholar
  40. 34.
    S. Suhai, Int. J. Quant. Chern. 11 223 (1984).CrossRefGoogle Scholar
  41. 35.
    Osman, Int. J. Quant. Chern. QBS14 (in press).Google Scholar
  42. 36.
    J.N. Murrell, The Theory of the Electronic Spectra of Organic Molecules, Methuen and Co. Ltd, London, 1963, point 6.3Google Scholar
  43. C. Longuet-Higgins and L. Salem, Proc. Roy. Soc. A251, 172 (1959).Google Scholar
  44. 37.
    C.D. Johnson and T.B Rymer, Nature 2131045 (1987).CrossRefGoogle Scholar
  45. 38.
    M. Isaacson, J. Chern. Phys. 56, 184 (1972)Google Scholar
  46. C.D. Johnson, Radiation Research 56, 63 (1972).CrossRefGoogle Scholar
  47. 39.
    N. Swansson and C.I. Powell, J. Chern. Phys. 39, 630 (1963).CrossRefGoogle Scholar
  48. 40.
    D. Pines, Rev. Mod. Phys. 28, 184 (1956).CrossRefGoogle Scholar
  49. 41.
    J. Jäger and J. Ladik, Phys. Lett. 28A, 328 (1968).Google Scholar
  50. 42.
    J. Ladik and K. Appel, J. Chern. Phys.40, 2470 (1964)CrossRefGoogle Scholar
  51. J. Ladik and G. Biczó, J. Chern. Phys. 42, 1658 (1965).CrossRefGoogle Scholar
  52. 43.
    J. Ladik, A. Sutjianto and P. Otto, J. Mol. Struct. (Theochem) 228, 271 (1991).CrossRefGoogle Scholar
  53. 44.
    J. Ladik, H. Früchtl and P. Otto, J. Mol. Struct. 297, 215 (1993).CrossRefGoogle Scholar
  54. 45.
    I. Egri, Excitons and Plasmons in Metals, Semiconductors and Insulators: a Unified Approach, Phys. Reports, 119, 363 (1985).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Janos Ladik
    • 1
  • Wolfgang Förner
    • 1
  1. 1.Institut für Theoretische ChemieUniversität ErlangenErlangenGermany

Personalised recommendations