The Axiomatic Approach in Physics

  • Thomas A. Brody

Abstract

In this paper it is shown, firstly, that physical theories contain not completely formalizable elements, the most significant being meaning assignments to formal components, approximations, unspecified elements fixed by suitable determination in specific models, and the scope (or region of validity) of the theories; secondly, that the importance of these elements depends on the type of theory as specified by a number of characteristics; and thirdly, that theories can — and must — contain various kinds of inconsistencies that are amenable to rational manipulation but preclude axiomatization within the framework of formal logic. Finally a number of aims for the axiomatic approach are outlined which are compatible with these non-formalizable elements and moreover do not exist for axiomatic methods in mathematics.

Keywords

Logical Positivism Geophysics Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhaskar, R. (1978): A Realist Theory of Science ( Harvester Press, Sussex )Google Scholar
  2. Bohr, A., Mottelson, B.R. (1969/75): Nuclear Structure 2 Vol. (Benjamin, New York)Google Scholar
  3. Brown, G.E. (1971): Unified Theory of Nuclear Models and Forces 3rd edn. ( North-Holland, Amsterdam )Google Scholar
  4. Bunge, M. (1968) in I. Lakatos & A. Musgrave (eds.) Problems in the Philosophy of Physics ( North-Holland, Amsterdam ) p. 120CrossRefGoogle Scholar
  5. Bunge, M. (1973): Philosophy of Science ( Reidel, Dordrecht )Google Scholar
  6. Claverie, P, Diner, S. (1976): in O. Chalvet et al. (eds.) Localization and Delocalization in Quantum Chemistry Vol. II (Reidel, Dordrecht) pp. 395, 449, 461CrossRefGoogle Scholar
  7. Carathéodory, C. (1909): Math. Annalen 67, 355CrossRefGoogle Scholar
  8. Falk, G., Jung, H. (1959) in S. Flügge (ed.) Handbuch der Physik, Vol. III/2 ( Springer, Berlin Heidelberg New York ), p. 119Google Scholar
  9. Farquhar, I. (1964): Ergodic Theory in Statistical Mechanics ( Wiley, New York )Google Scholar
  10. Gudder, S.P. (1977) in W.O. Price & S.S. Chissick (eds.) The Uncertainty Principle and Foundations of Quantum Mechanics ( Wiley, London ), p. 247Google Scholar
  11. Hao Wang (1963): A Survey of Mathematical Logic Chapt. I II ( North-Holland, Amsterdam )MATHGoogle Scholar
  12. Heyting, A. (1930): Sitzber. preuss. Akad. Wiss., phys. math. Kl. (Göttingen) p. 42, 57, 158Google Scholar
  13. Hilbert, D. (1900): Nachr. K. Ges. Wiss., math-phys. Kl., 253Google Scholar
  14. Hilbert, D., Bernays, P. (1934/39): Grundlagen der Mathematik (J. Springer, Berlin)Google Scholar
  15. Jaynes, E.T. (1957): Phys. Rev. 106, 171ADSCrossRefGoogle Scholar
  16. Jost, R. (1960) in M. Fierz, V.F. Weisskopf (eds.) Theoretical Physics in the Twentieth Century (Interscience) p. 107Google Scholar
  17. Kneebone, G.T. (1963): Mathematical Logic and the Foundations of Mathematics ( Van Nostrand, London )MATHGoogle Scholar
  18. Mehra, J., Sudarshan, E.C.G. (1972): Nuovo Cimento 11B, 215MathSciNetCrossRefGoogle Scholar
  19. Neumann, J. von (1932): Mathematische Grundlagen der Quantenmechanik ( Springer, Berlin Heidelberg New York )MATHGoogle Scholar
  20. Penrose, O. (1970): Foundations of Statistical Mechanics (Wiley, New York)MATHGoogle Scholar
  21. Rosenfeld, L. (1968): Nucl. Phys. A108 (1954), 241MATHCrossRefGoogle Scholar
  22. Scheibe, E. (1973): The Logical Analysis of Quantum Mechanics ( Pergamon Press, Oxford ) p. 14Google Scholar
  23. Suppes, P. (1954): Philos. Sci. 21, 242CrossRefGoogle Scholar
  24. Tisza, L. (1963): Rev. Mod. Phys. 35, 151ADSCrossRefGoogle Scholar
  25. Tolman, R.C. (1938): The Principles of Statistical Mechanics ( Oxford University Press, Oxford )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Thomas A. Brody

There are no affiliations available

Personalised recommendations