Are Hidden Variables Possible?

  • Thomas A. Brody


The impossibility proof given by von Neumann for hidden variables to complete quantum mechanics is a direct consequence of the density-matrix formalism; since this stands or falls with quantum theory itself, “deterministic” or dispersionless hidden variables, but only these, must be ruled out. This is shown to be valid for all statistical theories in physics. That there exist theories with acceptable hidden variable structures then shows that dispersive hidden variables cannot be ruled out either classically or quantum-mechanically.


Quantum Mechanic Hide Variable Heaviside Step Function Quantum Formalism Conceptual Confusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertson, J. (1961): Amer. J. Phys. 29, 478MathSciNetADSCrossRefMATHGoogle Scholar
  2. Bell, J.S. (1966): Rev. Mod. Phys. 38, 441ADSCrossRefGoogle Scholar
  3. Böhm, D. (1952): Phys. Rev. 85 166, 180ADSCrossRefGoogle Scholar
  4. Böhm, D., Bub, J. (1966): Rev. Mod. Phys. 38, 453ADSCrossRefGoogle Scholar
  5. Brody, T.A. (1983): Rev. Mex. Fis. 29, 461MathSciNetGoogle Scholar
  6. Broglie, L. de (1953): La physique quantique rest er a-t-ell e indeterministe? (Gauthier-Villars, Paris)Google Scholar
  7. Fano, U. (1957): Rev. Mod. Phys. 29, 74MathSciNetADSCrossRefMATHGoogle Scholar
  8. Gleason, A.M. (1957): J. Math. Mech. 6, 885MathSciNetMATHGoogle Scholar
  9. Kochen, S., Specker, E.P. (1967): J. Math. Mech. 17, 59MathSciNetMATHGoogle Scholar
  10. Nelson, E. (1966): Phys. Rev. 150, 1079ADSCrossRefGoogle Scholar
  11. Nelson, E. (1967): Dynamical Theories of Brownian Motion ( Princeton University Press, Princeton, N.J. )MATHGoogle Scholar
  12. Neumann, J. von (1932): Mathematische Grundlagen der Quantenmechanik (Springer Verlag Berlin [Engl. tr. Princeton University Press, Princeton, N.J. 1955 ]MATHGoogle Scholar
  13. Siegel, A., Wiener, N. (1956): Phys. Rev. 101, 429MathSciNetADSCrossRefGoogle Scholar
  14. Wiener, N., Siegel, A. (1953): Phys. Rev. 91, 1951MathSciNetADSCrossRefGoogle Scholar
  15. Wiener, N., Siegel A. (1955): Nuovo Cim. Suppl. 2, 304MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Thomas A. Brody

There are no affiliations available

Personalised recommendations