Skip to main content

Multicellular Mechanics in the Creation of Anatomical Structures

  • Conference paper
Book cover Biomechanics of Active Movement and Division of Cells

Part of the book series: NATO ASI Series ((ASIH,volume 84))

Abstract

Embryonic development is largely a problem of applied engineering. Molecular mechanisms combine with physical forces to create intricate networks of tubes, rods, cables and bearings, among many other types of structures. The illustrations in any textbook of anatomy will show you hundreds of structures at least as intricate (and seemingly well designed) as any ever built by human engineers. Yet the builders of anatomy are not conscious beings, much less intelligent ones, but merely cells and molecules, ultimately controlled by genes. Our problem is to trace the causal chains by which genes bring anatomy into existence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Ankel WE Eigenbrodt H (1950) Über der Wuchsform von Spongilla in sehr flachen Raumenn. Zool Anz 145: 195–204

    Google Scholar 

  • Bard, J (1990) Morphogenesis: The Cellular and Molecular Processes of Developmental Anatomy. Cambridge U. Press, Cambridge

    Chapter  Google Scholar 

  • Barlow RN (1935) The sternalis muscle in American whites and Negroes. Anat Rec 61: 413–426

    Article  Google Scholar 

  • Bjorklund NK Gordon R (1993) Nuclear state splitting: a working model for the mechanochemical coupling of differentiation “waves” with the controlling genes (master genes) Metastabil’noe sostoianie iadra: rabochaia model’ mekhanokhimicheskoi sviazi “voln” differentsirovki s upravliaiushchimi genami (master genes). Ontogenez 24: 5–23

    Google Scholar 

  • Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263: 284–302

    Article  Google Scholar 

  • Bond C Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246: 271–284

    Article  Google Scholar 

  • Campbell RD (1967a) Tissue dynamics of steady state growth in Hydra littoralis. I. Behavior of specific cell types during tissue movements. J Exp Zool 164: 379–392

    Article  Google Scholar 

  • Campbell RD (1967b) Tissue dynamics of steady state growth in Hydra littoralis. II. Patterns of tissue movement. J Morph 121: 19–28

    Article  Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: Origin of the limb musculature J Emb Exp Morph 41: 245–58

    Google Scholar 

  • Cihäk R (1972) Ontogenesis of the skeleton and intrinsic muscles of the human hand and foot. Ergbn d Anat u Entw Gesch Bd 46, Heft 1, 1–194

    Google Scholar 

  • Elsdale TR (1968) Parallel orientation of fibroblasts in vitro. Exp Cell Res 51: 439–450

    Article  Google Scholar 

  • Elsdale TR (1973). The generation and maintenance of parallel arrays in cultures of diploid fibroblasts. In: Biology of Fibroblasts, ed. E. Kulonen and J. Pikkarainen, Academic Press, pp. 41–58

    Google Scholar 

  • Fung YC (1977) A first course in continuum mechanics, second edition Prentice Hall Englewood Cliffs, New Jersey

    Google Scholar 

  • Galtsoff P S (1925) Regeneration after dissociation, an experimental study on sponges. J Exp Zool 112: 465–483

    Google Scholar 

  • Gordon JE (1978) Structures, or why things don’t fall down. Plenum Press, New York.

    Google Scholar 

  • Gordon R Brodland GW (1987) The cytoskeletal mechanics of brain morphogenesis. Cell state splitters cause primary neural induction. Cell Biophys 11: 177–238

    Google Scholar 

  • Grant BCJ (1962) An Atlas of Anatomy, fifth edition,Williams and Wilkins, Baltimore

    Google Scholar 

  • Grim M (1991) Control of muscle morphogenesis and endplate pattern in limb muscles of avian chimeras, pp. 293–297 in Developmental Patterning of the Vertebrate Limb, edit J R Hinchliffe et al. Plenum Press New York

    Google Scholar 

  • Harris, AK (1973) Cell surface movements related to cell locomotion, pp. 3–26 in “Locomotion of Tissue Cells” Ciba Foundation Symposium, Elsevier, Amsterdam

    Google Scholar 

  • Harris AK (1976) Is cell sorting caused by differences on the work of intracellular adhesion? A critique of the Steinberg hypothesis. J Theoretical Biol 61: 267–285

    Article  Google Scholar 

  • Harris AK (1987) Cell motility and the problem of anatomical homeostasis. J Cell Sci Supp 8: 121–140

    Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata; a new wrinkle in the study of cell locomotion. Science 208: 177–179

    Article  ADS  Google Scholar 

  • Harris AK, Stopak D,Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290: 249–251

    Article  ADS  Google Scholar 

  • Holtfreter J (1939) Gewebaffinität, ein Mittel der embryonalen Formbildung. Arch. Exp. Zellf. 23: 169–209

    Google Scholar 

  • Houwink R (1958) Elasticity, Plasticity and the Structure of Matter. Cambridge U. Press. Cambridge

    Google Scholar 

  • Huxley JS (1911) Some phenomena of regeneration in Sycon: with a note on the structure of its collar cells. Phil Trans Roy Soc Lond Ser B 202: 165–189

    Article  ADS  Google Scholar 

  • Huxley JS (1921) Further studies on reconstitution bodies and free tissue culture in Sycon. Quart J Micros Sci 65: 293–322

    Google Scholar 

  • Karfunkel P (1974) The mechanism of neural tube formation. Int Rev Cytol 38: 245–271

    Article  Google Scholar 

  • Katzberg, A A (1951) Distance as a factor in the development of attraction fields between growing tissues in culture. Science 114: 431–432

    Article  ADS  Google Scholar 

  • Lawrence PA (1992) The Making of a Fly. Blackwell, London.

    Google Scholar 

  • Lenhoff SG, Lenhoff HM (1986) Hydra and the Birth of Experimental Biology: Abraham Trembly’s memoires concerning the polyps. Boxwood Press, Pacific Grove CA.

    Google Scholar 

  • Moscona AA (1957) The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc Natl Acad Sci USA 49: 184–194.

    Article  ADS  Google Scholar 

  • Nose A, Nagafuchi A, Takeichi M (1988) Expressed recombinant Cadherins mediate cell sorting in model systems. Cell 54: 993–1001

    Article  Google Scholar 

  • Otto JJ (1977) Orientation and behavior of epithelial cell muscle processes during Hydra budding. J Exp Zool 202: 307–322

    Article  Google Scholar 

  • Otto JJ, Campbell RD (1977) Budding in Hydra attenuata: bud stages and fate map. J Exp Zool 200: 417–428

    Article  Google Scholar 

  • Phillips HM, Steinberg MS (1969) Equilibrium measurements of embryonic chick cell adhesiveness I. Shape equilibrium in centrifugal fields. Proc Natl Acad Sci USA 64: 121–127

    Article  ADS  Google Scholar 

  • Phillips HM, Steinberg MS (1978) Embryonic tissues as elasticoviscous liquids I. Rapid and slow shape changes in centrifuged cell aggregates. J Cell Sci 30: 1–20

    Google Scholar 

  • Phillips HM, Steinberg MS, Lipton BH (1977) Embryonic tissues as elasticoviscous liquids II. Direct evidence for cell slippage in centrifuged aggregates. Dev Biol 59: 124–134

    Article  Google Scholar 

  • Ruoff AL (1973) Materials Science. Prentice Hall Englewood Cliffs New Jersey.

    Google Scholar 

  • Shames IH (1964) Mechanics of Deformable Solids Prentice Hall Englewood Cliffs N.J.

    Google Scholar 

  • Karfunkel P (1974) The mechanism of neural tube formation. Int Rev Cytol 38: 245–271

    Article  Google Scholar 

  • Katzberg, A A (1951) Distance as a factor in the development of attraction fields between growing tissues in culture. Science 114: 431–432

    Article  ADS  Google Scholar 

  • Lawrence PA (1992) The Making of a Fly. Blackwell, London.

    Google Scholar 

  • Lenhoff SG, Lenhoff HM (1986) Hydra and the Birth of Experimental Biology: Abraham Trembly’s memoires concerning the polyps. Boxwood Press, Pacific Grove CA.

    Google Scholar 

  • Moscona AA (1957) The development in vitro of chimeric aggregates of dissociated embryonic chick and mouse cells. Proc Natl Acad Sci USA 49: 184–194.

    Article  ADS  Google Scholar 

  • Nose A, Nagafuchi A, Takeichi M (1988) Expressed recombinant Cadherins mediate cell sorting in model systems. Cell 54: 993–1001

    Article  Google Scholar 

  • Otto JJ (1977) Orientation and behavior of epithelial cell muscle processes during Hydra budding. J Exp Zool 202: 307–322

    Article  Google Scholar 

  • Otto JJ, Campbell RD (1977) Budding in Hydra attenuata: bud stages and fate map. J Exp Zool 200: 417–428

    Article  Google Scholar 

  • Phillips HM, Steinberg MS (1969) Equilibrium measurements of embryonic chick cell adhesiveness I. Shape equilibrium in centrifugal fields. Proc Natl Acad Sci USA 64: 121–127

    Article  ADS  Google Scholar 

  • Phillips HM, Steinberg MS (1978) Embryonic tissues as elasticoviscous liquids I. Rapid and slow shape changes in centrifuged cell aggregates. J Cell Sci 30: 1–20

    Google Scholar 

  • Phillips HM, Steinberg MS, Lipton BH (1977) Embryonic tissues as elasticoviscous liquids II. Direct evidence for cell slippage in centrifuged aggregates. Dev Biol 59: 124–134

    Article  Google Scholar 

  • Ruoff AL (1973) Materials Science. Prentice Hall Englewood Cliffs New Jersey.

    Google Scholar 

  • Shames IH (1964) Mechanics of Deformable Solids Prentice Hall Englewood Cliffs N.J.

    Google Scholar 

  • Wilson HV (1911) On the behavior of the dissociated cells in hydroids, Alcyonaria and Asterias. J Exp Zool 11: 281–338

    Article  Google Scholar 

  • Wilson HV, Penny JT (1930) The regeneration of sponges (Microciona) from dissociated cells. J Exp Zool 56: 73–147

    Article  Google Scholar 

  • Wolpert L (1969) Positional information and the spatial control of cellular differentiation. J Theor Biol 25: 1–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harris, A.K. (1994). Multicellular Mechanics in the Creation of Anatomical Structures. In: Akkaş, N. (eds) Biomechanics of Active Movement and Division of Cells. NATO ASI Series, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78975-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78975-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78977-9

  • Online ISBN: 978-3-642-78975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics