Advertisement

The Anaphase Movement and its relashionship with cell cleavage

  • Miguel Mota
Conference paper
Part of the NATO ASI Series book series (volume 84)

Abstract

All steps of the mitotic and meiotic processes have given rise to a large number of theories and much discussion but none has been so prolific in this respect as the anaphase movement, when daughter chromosomes leave the equatorial plate and move their centromeres up to the poles of the achromatic spindle.

Keywords

Traction Fiber Cleavage Furrow Cell Cleavage Equatorial Plate Contractile Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belar, K. (1929a) Beitrage zur Kausanalyse der Mitose. II. Ach. Entwmk. 118: 359–480Google Scholar
  2. Belar, K. (1929b) Beitrage zur Kausanalyse der Mitose. III. Z. Zellf. 10: 73–134CrossRefGoogle Scholar
  3. Beneden, E. van (1883) Recherches sur la maturation de l’oeuf, la fécondation et la division cellulaire. Arch.Biol. 4: 265–641Google Scholar
  4. Brinkley, B. R.; Zinkowsky, R. P.; Mollon, W. L.; Davis, F. M.; Pisegna, M. A.; Pershouse, M. and Rao, P. N. (1988) Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature 336: 251–254ADSCrossRefGoogle Scholar
  5. Gorbsky, G. J.; Sammak, P. J. and Borisy, G. G. (1987) Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104: 9–18CrossRefGoogle Scholar
  6. Hughes, A. F, (1952) The mitotic cycle. New YorkGoogle Scholar
  7. Levan, A. (1945) Cytological reactions induced by inorganic salt solutions. Nature 153: 751ADSCrossRefGoogle Scholar
  8. Mazia, D. (1961) Mitosis and the physiology of cell division. The Cell (J. Brächet and A. E. Mirsky, editors ), Academic Press, vol. 3: 77–412Google Scholar
  9. Metz, C. W. (1933) Monocentric mitosis with segregation of chromosomes in Sciara and its bearing on the mechanism of mitosis. Biol. Bull. 64: 333–347CrossRefGoogle Scholar
  10. Mota, M. (1952) The action of seed extracts on chromosomes. Arquivo de Patologia 24 (3): 336–357Google Scholar
  11. Mota, M. (1957) A new hypothesis on the anaphase movement. Proceedings of the International Genetics Symposium, 1956, Supplement volume of Cytologia pp. 113–116Google Scholar
  12. Mota, M. (1959) Karyokinesis without cytokinesis in the grasshopper. Experimental Cell Research 17: 76–83CrossRefGoogle Scholar
  13. Nicklas, B. (1988) Chromosomes and kinetochores do more in mitosis than previously thought. Chromosome structure and function (J. P. Gustaf son and R. Appels, editors ), Plenum Press: 53–74Google Scholar
  14. Ris, H. (1949) The anaphase movement of chromosomes in the spermatocytes of the grasshopper. Biol Bull 96: 90–106.CrossRefGoogle Scholar
  15. Schräder, F. (1944, 1954 ) Mitosis (1st and 2nd editions), New YorkGoogle Scholar
  16. Watase, S. (1891) Studies on cephalopods J. Morph. 4: 247–303.CrossRefGoogle Scholar
  17. Yen, T. J.; Compton, D. A.; Wise, D.; Zinkowsky, R. P.; Brinkley, B. R.; Earnshaw, W. C. and Cleveland, D. W. (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 10: 1245–1254Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Miguel Mota
    • 1
  1. 1.Department of GeneticsEstação Agronómica NacionalOeirasPortugal

Personalised recommendations