Kinetochore Directional Instability in Vertebrate Mitotic Cells

  • Robert V. Skibbens
  • E. D. Salmon
Conference paper
Part of the NATO ASI Series book series (volume 84)

Abstract

Vertebrate mitotic spindles are formed from oppositely oriented polar microtubule (MT) arrays nucleated from centrosomes. MTs mostly grow and shorten by the addition and loss of tubulin subunits from the MT plus-ends distal from the pole. Chromosomes become attached to the spindle when kinetochores capture and stabilize the dynamically instable MT plus-ends (reviewed in Salmon, 1989).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajer, A.S. 1982. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J. Cell Biol 93: 33–48.CrossRefGoogle Scholar
  2. Cassimeris, L., C.L. Rieder and E.D. Salmon. 1993. Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression..J. Cell Science, submitted.Google Scholar
  3. Coue, M., V.A. Lombillo and J.R. Mcintosh. 1991. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol 112: 1165–1175.CrossRefGoogle Scholar
  4. Gorbsky, G.H., P.J. Sammak, and G.G. Borisy. 1987. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochores ends J. Cell Biol. 104: 9–18.CrossRefGoogle Scholar
  5. Gorbsky, G. 1992. Chromosome motion in mitosis. BioEssays 14: 73–80.Google Scholar
  6. Hays, T.S., D. Wise, and E.D. Salmon. 1982. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J. Cell Biol 93: 374–382.CrossRefGoogle Scholar
  7. Hotani, H. and H. Miyamoto. 1990. Dynamic features of microtubules as visualized by dark-field microscopy. Adv. Biophysics 26: 135–156.CrossRefGoogle Scholar
  8. Hyman, A.A. and T.J. Mitchison. 1991. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature 351: 206–211.ADSCrossRefGoogle Scholar
  9. Inoue, S. and H. Sato. 1967. Cell motility by labile association of molecules. Hie nature of mitotic spindle fibers and their role in chromosome movement. J. General Pliys. 50: 259–292.CrossRefGoogle Scholar
  10. Koshland, D.E., T.J. Mitchison and Marc W. Kirschner. 1988. Poleward chromosome movement driven by microtubule depolymerization in vitro. Nature 331: 499–504.ADSCrossRefGoogle Scholar
  11. Leslie, R.J. 1992. Chromosomes attain a metaphase position on half-spindles in the absence of an opposing spindle pole. J. Cell Science 103: 125–130.Google Scholar
  12. Mitchison, T.J., L. Evans, E. Schulze, and M. Kirschner. 1986. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45: 515–527.CrossRefGoogle Scholar
  13. Mitchison, T.J. 1988. Microtubule dynamics and kinetochore function in mitosis. Annu. Rev. Cell Biol. 4: 527–549.CrossRefGoogle Scholar
  14. Mitchison, T.J. 1989. Chromosomes alignment at mitotic metaphase: balanced forces or smart kinetochores? Cell Movement. Volume 2: Kinesen, Dynein, and Micerotubule dynamics. 421–430.Google Scholar
  15. Mitchison, TJ. 1989. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109: 637 - 652.CrossRefGoogle Scholar
  16. Mitchison, T.J. and E.D. Salmon. 1992. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis..J. Cell Biol. 119: 569–582.CrossRefGoogle Scholar
  17. Nicklas, R.B. 1977. Chromosome movement: facts and hypotheses. In Mitosis Facts and Questions, eds. Little, Paweletz, Petzelt, Ponstingl, Schroeter and Zimmermann. Springer-Verlag, 150–155.CrossRefGoogle Scholar
  18. Nicklas, R.B. 1988. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Chem. 17: 431–449.CrossRefGoogle Scholar
  19. Nicklas, R.B. 1989. The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J. Cell Biol 109: 2245–2255.CrossRefGoogle Scholar
  20. Ostergren, G. 1950. Considerations on some elementary features of mitosis. Hereditas 36: 1–18.CrossRefGoogle Scholar
  21. Pfarr, C.M., M. Coue, P.M. Grissom, T.S. Hays, M.E. Porter and J.R. Mcintosh. 1990. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature 345: 263–265.ADSCrossRefGoogle Scholar
  22. Rieder, C.L., E.A. Davison, L.C.W. Jensen, L. Cassimeris and E.D. Salmon. 1986. Oscillatory movements of mono-oriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103: 581–591.CrossRefGoogle Scholar
  23. Rieder, C.L. 1990. Formation of the astral mitotic spindle: ultrastructural basis for the centrosome- kinetochore interaction. Electron Micros. Rev. 3 (2): 269–300.MathSciNetADSCrossRefGoogle Scholar
  24. Salmon, E.D. 1989. Microtubule dynamics and chromosome movement. In Mitosis: Molecules and Mechanisms, eds. Hyam and Brinkley. Academic Press Limited, 119–181.Google Scholar
  25. Sawin, K.E., T.J. Mitchison, and L.G. Wordeman. 1992. Evidence for kinesin-related proteins in the mitotic apparatus using peptide antibodies. J. Cell Science 101: 303–313.Google Scholar
  26. Skibbens, R. V., V. Petrie Skeen and E. D. Salmon. 1993. Directional Instability of Kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122 (4): 859–875.CrossRefGoogle Scholar
  27. Steuer, E.R., L. Wordeman, T.A. Schroer, and M.P. Sheetz. 1990. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature 345: 266–268.ADSCrossRefGoogle Scholar
  28. Theurkauf, W.E. and R.S. Hawley. 1992. Meiotic spindle assembly in Drosophila females: behavior of non exchange chromosomes and the effects of mutations in the nod kinesin-like protein. J. Cell Biol 116: 1167–1180.CrossRefGoogle Scholar
  29. Wordeman, L., Eric R. Steuer, Michael P. Sheetz and Tim Mitchison. 1991. Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes..J. Cell Biol. 114: 285–294.CrossRefGoogle Scholar
  30. Yen, T.J., Gang Li, Bruce T. Schaar, Illya Szilak and Don W. Cleveland. 1992. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359: 536–539.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Robert V. Skibbens
    • 1
  • E. D. Salmon
    • 1
  1. 1.Department of BiologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations