Skip to main content

Elastic Properties of Layered Membranes and Their Role in Transformations of Cellular Shapes

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 84))

Abstract

Biological membranes are in general layered structures. Phospholipid bilayers as their basic structural unit are composed of two opposing phospholipid monolayers. Many biological membranes have as an additional layer a bilayer linked two-dimensional intracellular network of skeletal proteins. An extracellular matrix can also be considered as a separate layer parallel to other membrane layers. In the work presented here it is taken that membrane layers are in contact but unconnected in the sense that they are free to slide one by the other. Each layer can thus establish its lateral elastic equilibrium in an independent manner. Such physical picture of biological membranes has structural grounds. The two monolayers of a phospholipid bilayer are in contact because of the hydrophobic effect and are unconnected as there are no direct bonds between their molecules. Membrane cytoskeletons are in general in contact with the phospholipid part of the membrane by being attached to it by bonds to the integral membrane proteins. When these proteins can move laterally in the phospholipid milieu sufficiently freely, the cytoskeleton can also be considered as an unconnected membrane layer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bozic B, Svetina S, Zeks B and Waugh RE (1992) The role of lamellar membrane structure in tether formation from bilayer vesicles. Biophys J 61: 963–973

    Article  Google Scholar 

  • Evans EA (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14: 923–931

    Article  Google Scholar 

  • Farge E and Devaux PF (1992) Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J 61: 347–357

    Article  Google Scholar 

  • Heinrich V, Svetina S and ZekS B (1993) Nonaxisymmetric shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes. Phys Rev E 48: 3112–3123

    Article  ADS  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28c: 693–703

    MathSciNet  Google Scholar 

  • Helfrich W (1974) Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z Naturforsch 29c: 510–515

    Google Scholar 

  • Käs J and Sackmann E (1992) Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J 60: 825–844

    Article  Google Scholar 

  • Kas J, Sackmann E, Podgornik R, Svetina S and ZekS B (1993) Thermally induced budding of phospholipid vesicles - a discontinuous process. J Phys II France 3: 631–645

    Article  Google Scholar 

  • Peterson MA (1992) Linear response of the human erythrocyte to mechanical stress. Phys Rev A 45: 4116–4131

    Article  ADS  Google Scholar 

  • Schroit AJ and Zwaal RFA (1991) Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta 1071: 313–329

    Google Scholar 

  • Seifert U, Berndl K and Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44: 1182–1202

    Article  ADS  Google Scholar 

  • Sheetz MP and Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-induced interactions. Proc Nat Acad Sci USA 71: 4457–4461

    Article  ADS  Google Scholar 

  • Svetina S and Zeks B (1989) Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J 17: 101–111

    Article  Google Scholar 

  • Svetina S and Zeks B (1990) The mechanical behaviour of cell membranes as a possible physical origin of cell polarity. J theor Biol 146: 115–122

    Article  Google Scholar 

  • Svetina S and Zeks B (1991) Mechanical behavior of closed lamellar membranes as a possible common mechanism for the establishment of developmental shapes. Int J Develop Biol 35: 359–365

    Google Scholar 

  • Svetina S and Zeks B (1992) The elastic deformabi1ity of closed multilayered membranes is the same as that of a bilayer membrane. Eur Biophys J 21: 251–255

    Article  Google Scholar 

  • Svetina S, Brumen M and ZekS B (1985) Lipid bilayer elasticity and the bilayer couple interpretation of red cell shape transformations and lysis. Stud Biophys 110: 177–184

    Google Scholar 

  • Svetina S, Gros M, Vrhovec S, Brumen M and Zeks B (1988) Red blood cell membrane vesiculation at low pH and bilayer couple mechanism of red blood cell shape transformations. Stud Biophys 127: 193–199

    Google Scholar 

  • Svetina S, IgliC A and ZekS B (1993) On the role of the elastic properties of closed lamellar membranes in membrane fusion. Ann N Y Acad Sci: in print

    Google Scholar 

  • Waugh RE, Song J, Svetina S and ZekS B (1992) Local and non-local curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys J 61: 974–982

    Article  Google Scholar 

  • ZekS B, Svetina S and Pastushenko V (1990) The shapes of phospholipid vesicles in an external electric field - a theoretical analysis. Stud Biophys 138: 137–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Svetina, S., Žekš, B. (1994). Elastic Properties of Layered Membranes and Their Role in Transformations of Cellular Shapes. In: Akkaş, N. (eds) Biomechanics of Active Movement and Division of Cells. NATO ASI Series, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78975-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78975-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78977-9

  • Online ISBN: 978-3-642-78975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics