Advertisement

Local Bending Fluctuations of the Cell Membrane

  • Rafi Korenstein
  • Shmuel Tuvia
  • Leonid Mittelman
  • Shlomo Levin
Part of the NATO ASI Series book series (volume 84)

Abstract

Submicron mechanical fluctuations of the cell membrane are a newly recognized dynamical activity of the living cell (Krol et al., 1990; Levin and Korenstein, 1991; Mittelman et al., 1991; Tuvia et al., 1992a). These fluctuations consist of 300-20nm reversible displacements of the cell membrane in the frequency range of 0.3-30Hz, correspondingly. Submicron cell membrane fluctuations (CMF) were observed in different types of cells including red blood cells (Krol et al., 1990, Levin and Korenstein, 1991) monocytes, lymphocytes, 3T6 fibroblasts, cardiomyocytes (Krol et al., 1990) and murine lymphoma cells (Mittelman et al., 1991).

Keywords

Atrial Natriuretic Peptide Displacement Amplitude Fluctuation Amplitude Cell Filterability Membrane Skeleton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagge, U., Braneerman, P.I., Karlson, R. and Skalak, R. (1980) Three dimensional observations of red blood cell deformation in capillaries. Blood Cells 6: 231–237.Google Scholar
  2. Baertschi, A.J., Adams, J.M. and Sullivan, M. (1988) Acute hypoxia stimulate atrialnatriuretic factor secretion in vivo. Am. J. Physiol. 255: H295–H300.Google Scholar
  3. Bennett, V. (1989) The spectrin-actin junction of erythrocyte membrane skeletons. Biochim. Biophys. Acta 988: 107–121.Google Scholar
  4. Bennett, V. (1990) Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol. Rev. 70: 1029–1065.Google Scholar
  5. Brenner, B.M., Ballerman, B.J., Gunning, M.E. and Ziedel, M.L. (1990) Diverse biological actions of atrial natriuretic peptide. Physiol. Rev. 70: 665–699.Google Scholar
  6. Brochard, F., and Lennon, J.F. (1975) Frequency spectrum of the flicker phenomenon in erythrocytes. J. Phys. (Paris) 36: 1035–1047.CrossRefGoogle Scholar
  7. Evans, E.A., (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43: 27–30.CrossRefGoogle Scholar
  8. Felder, S., and Elson, E.L. (1990) Mechanics of fibroblast locomotion: quantitative analysis of forces and motions of the leading lamellae of fibroblast. J. Cell Biol. 111: 2513–2526.CrossRefGoogle Scholar
  9. Flatman, P.W., (1980) The effect of buffer composition and deoxygenation on the concentration of ionized Magnesium inside human red blood cells. J. Physiol. 300: 19–30.Google Scholar
  10. Flatman, P.W., (1988) The control of red cell magnesium. Magnesium. Res 1: 5–11.Google Scholar
  11. Fowler, V.M. and Bennett, V. (1984) Erythrocyte membrane tropomyosin: purification and properties. J. Biol. Chem. 259: 5978–5989.Google Scholar
  12. Fricke, K., and Sackmann E. (1984) Variation of frequency spectrum of the erythrocyte flickering caused by aging, osmolarity, temperature and pathological changes. Biochim. Biophys. Acta 803: 145–152.CrossRefGoogle Scholar
  13. Fricke, K., K. Wirthensohn, R. Laxhuber and Sackmann, E. (1986) Flicker spectroscopy of erythrocytes. A sensitive method to study subtle changes of membrane bending stiffness. Eur. Biophys. J. 14: 67–81.CrossRefGoogle Scholar
  14. Gaehtgens, P., Duhssen, C. and Albrecht, K.H., (1980) Motion, deformation and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood cells 6: 799–812.Google Scholar
  15. Gupta, R.K., Benovic, J.L. and Rose, Z.B. (1978) The determination of the free Magnesium level in human red blood cell by 31NMR. J. Biol. Chem. 253: 6172–6176.Google Scholar
  16. Krol, A.Ju., Grinfeldt, M.G. and Levin, S.V. and Smilgavichus, A.D. (1990) Local mechanical oscillations of the cell surface within range 0.2-30 Hz. Eur. Biophys. J. 19: 93–99.CrossRefGoogle Scholar
  17. Levin, S.V., and Korenstein, R. (1991) Membrane fluctuations in erythrocytes are linked to MgATP dependent dynamic assembly of the membrane skeleton. Biophys. J. 60: 733–737.CrossRefGoogle Scholar
  18. Mittelman, L., Levin, S.V., and Korenstein, R. (1991) Fast cell membrane displacements in lymphocytes:modulation by dihydro-cytochalasin and colchicine. FEBS Letters 293: 207–210.CrossRefGoogle Scholar
  19. Petersen, A., Kristensen, S.R., Jacobsen, K.P. and Horder, M. (1990) 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes. Biochim. Biophys. Acta. 1035: 165–174.Google Scholar
  20. Rapoport, I., Berger, H., Rapoport, S.M., Eisner, R. and Gerbes, G. (1976) Response of the glycolysis of human erythrocytes to the transition from oxygenated to the deoxygenated state at constant intracellular pH. Biochim. Biophys. Acta. 428: 193–204.CrossRefGoogle Scholar
  21. Shen, B.V., Josephs, R., and Steck T.L. (1986) Ultrastructure of the intact skeleton of the human erythrocyte membrane. J. Cell Biol. 102: 997–1006.CrossRefGoogle Scholar
  22. Tuvia, S., Levin, S., and Korenstein, R. (1992a) Oxygenation - Deoxygenation cycle of erythrocytes modulates the submicron cell membrane fluctuations. Biphys. J. 63: 599–602.CrossRefGoogle Scholar
  23. Tuvia, S., Levin, S., and Korenstein, R. (1992b) Correlation between local cell membrane displacements and filterability of human red blood cells. FEBS Lett. 304: 32–36.CrossRefGoogle Scholar
  24. Vertessy, B.G., and Steck, T.L. (1989) Elasticity of the human red cell membrane skeleton. Effect of temperature and dénaturants. Biophys. J. 55: 255–262.CrossRefGoogle Scholar
  25. Zamir, N., Tuvia, S., Riven-Kreitman, R., Levin, S., and Korenstein, R. (1992) Atrial natriuretic peptide: Direct effects on human red blood cell dynamics. Biochim. Biophys. Res. Commun. 188: 1003–1009.CrossRefGoogle Scholar
  26. Zeman, K., Engelhart and Sackman, E. (1990) Bending undulations and elasticity of erythrocyte membrane: effect of cell shape and membrane organization. Eur. Biophys. J. 18: 203–219.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Rafi Korenstein
    • 1
  • Shmuel Tuvia
    • 1
  • Leonid Mittelman
    • 1
  • Shlomo Levin
    • 1
  1. 1.Department of Physiology and Pharmacology Sackler Faculty of MedicineTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations