Skip to main content

Part of the book series: NATO ASI Series ((ASIH,volume 84))

Abstract

Cilia and eukaryotic flagella are motile cellular organelles, usually between 5/μm and 200 μm long and 0.2 μm in diameter, used to produce relative motion between a cell and its liquid environment. Cilia tend to occur in large numbers (hundreds) on the surfaces of cells, such as Tetrahymena or epithelial cells in the human lung. In contrast, flagellated cells bear small numbers of the organelles, usually one (Crithidia and many spermatozoa) or two (Chlamydomonas), but sometimes four (Trichomonas), eight (Hexamita) or larger numbers (the Hypermastigida). Cilia and eukaryotic flagella have the same basic structure and motile behaviour, so that to avoid repetition, and possible confusion with the prokaryotic flagellum, which has a different structure and mode of action from its eukaryotic counterpart, in this Chapter the eukaryotic organelles will be referred to collectively as cilia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avolio J, Glazzard AN, Holwill MEJ, Satir P (1986) Structures attached to doublet microtubules of ciliaicomputer modelling of thin-section and negative- stained stereo images. Proc Nat Acad Sci USA 83: 4804–4808

    Article  ADS  Google Scholar 

  • Blake JR (1971) A spherical envelope approach to ciliary propulsion. J Fluid Mech 46: 199–208

    Article  ADS  MATH  Google Scholar 

  • Blake JR (1972) A model for micro-structure in ciliated organisms. J Fluid Mech 55: 1–23

    Article  ADS  MATH  Google Scholar 

  • Bozkurt HH, Woolley DM (1993) Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum. Cell Motil Cytoskel 24: 109–118

    Article  Google Scholar 

  • Brokaw CJ (1965) Non-sinusoidal bending waves of sperm flagella. J Exp Biol 43: 155–169

    Google Scholar 

  • Brokaw CJ (1972) Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J 12: 564–586

    Article  Google Scholar 

  • Brokaw CJ (1976) Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross bridge model. Biophys J 16: 1029–1041

    Article  Google Scholar 

  • Brokaw CJ (1979) Calcium-induced asymmetrical beating of Triton-demembranated sea urchin sperm flagella. J Cell Biol 82: 401–411

    Article  Google Scholar 

  • Brokaw CJ, Gibbons IR (1975) Mechanisms of movement in cilia and flagella. In:Wu TY-T, Brokaw CJ, Brennan C (eds) Swimming and Flying in Nature, Vol 1. Plenum, New York, p89

    Google Scholar 

  • Chevrier C, Dacheux J-L (1992) Evolution of the flagellar waveform of ram spermatozoa in relation to the degree of epididimal maturation. Cell Motil Cytoskel 23: 8–18

    Article  Google Scholar 

  • Eshel D, Brokaw CJ (1987) New evidence for a “Biased Baseline” mechanism for calcium-regulated asymmetry of flagellar bending. Cell Motil Cytoskel 7: 160–168

    Article  Google Scholar 

  • Gibbons BH, Gibbons IR (1972) Flagellar movement and adenosine triphosphatase ac¬tivity in sea urchin sperm extracted with Triton X-100. J Cell Biol 54: 75–97

    Article  Google Scholar 

  • Gibbons BH, Gibbons IR (1974) Properties of flagellar “rigor waves” formed by abrupt removal of adenosine try phosphate from actively swimming sea urchin sperm. J Cell Biol 63: 970–985

    Article  Google Scholar 

  • Goldstein SF (1976) Form of developing bendsends in reactivated sperm flagella. J Exp Biol 64: 173–184

    Google Scholar 

  • Goldstein SF (1977) Asymmetric waveforms in Echinoderm sperm flagella. J Exp Biol 71: 157–170

    Google Scholar 

  • Gray J (1955) The movement of sea urchin spermatozoa. J Exp Biol 32: 775 - 801

    Google Scholar 

  • Gray J, Hancock GJ (1955) The propulsion of sea urchin spermatozoa. J Exp Biol 32: 802–814

    Google Scholar 

  • Gueron S, Liron N (1993) Simulations of threee-dimensional ciliary beats and cilia interactions. Biophys J 65: 499–507

    Article  Google Scholar 

  • Gueron S, Liron N (1992) Ciliary motion modelling, and dynamic multicilia interactions. Biophys J 63: 1045–1058

    Article  Google Scholar 

  • Hamasaki T, Barkalow K, Richmond J, Satir P (1991) A cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc Nat Acad Sci USA 88: 7918–7922

    Article  ADS  Google Scholar 

  • Hines M, Blum J J (1983) Three-dimensional mechanics of eukaryotic flagella. Biophys J 41: 67–69

    Article  Google Scholar 

  • Hines M, Blum JJ (1984) On the contribution of moment-bearing links to bending and twisting in a three-dimensional sliding filament model. Biophys J 41: 67–79

    Article  Google Scholar 

  • Holwill MEJ (1965) The motion of Strigomonas oncopelti. J Exp Biol 42: 125–137

    Google Scholar 

  • Holwill MEJ (1974) Hydrodynamic aspects of ciliary and flagellar movement. In: Sleigh MA (ed) Cilia and Flagella, Academic Press, London, pl43

    Google Scholar 

  • Holwill MEJ (1980) Movement of cilia. Symp Soc Gen Microbiol 30: 273–300

    Google Scholar 

  • Holwill MEJ, Cohen HJ, Satir P (1979) A sliding microtubule model incorporating axonemal twist and compatible with three-dimensional ciliary bending. J Exp Biol 78: 265–280

    Google Scholar 

  • Holwill MEJ, Peters PD (1973) Dynamics of the hispid flagellum of Ochromonas danica. J Cell Biol 62: 322–328

    Article  Google Scholar 

  • Holwill MEJ, Satir P (1987) Generation of propulsive forces by cilia and flagella. In: Bereiter-Hahn J, Anderson OR, Reif W-E (eds) Cytomechanics. Springer-Verlag, Berlin, pl20

    Google Scholar 

  • Holwill MEJ, Satir P (1990) A physical model of microtubule sliding in ciliary axonemes. Biophys J 58: 905–917

    Article  Google Scholar 

  • Holwill MEJ, Satir P (1993) A physical model of axonemal splitting. Cell Motil Cytoskel In Press

    Google Scholar 

  • Holwill MEJ, Sleigh, MA (1967) Propulsion by hispid flagella. J Exp Biol 47: 267–276

    Google Scholar 

  • Jahn TL, Landman MD, Fonseca JR (1964) The mechanism of locomotion of flagel-lates.II. Function of the mastigonemes of Ochromonas. J Protozool 11: 291

    Google Scholar 

  • Johnston DN, Silvester NR, Holwill, MEJ (1979) An analysis of the shape and propa-gation of waves on the flagellum of Crithidia oncopelti. J Exp Biol 80: 299–315

    Google Scholar 

  • Johnson RE, Brokaw CJ (1979) Flagellar hydrodynamics: A comparison between resistive-force theory and slender-body theory. Biophys J 25: 113–127

    Article  Google Scholar 

  • Kamimura S, Takahashi K (1981) Direct measurement of the force of microtubule sliding in flagella. Nature 293: 566–5681

    Article  ADS  Google Scholar 

  • Knight-Jones EW (1954) Relationships between metachronism and the direction of cil-iary beat in Metazoa. Quart J Microsc Sci 95: 503–521

    Google Scholar 

  • Kurimoto E, Kamiya R (1991) Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner or outer arm dynein: Velocity measurements on new types of mutants by an improved method. Cell Motil Cytoskel 19: 275–281

    Article  Google Scholar 

  • Kushmeric MJ, Davies RE (1969) The chemical energetics of muscular contractionil. Proc Roy Soc Lond B Biol Sci 174: 315–353

    Article  ADS  Google Scholar 

  • Lighthill J (1976) Flagellar hydrodynamics. Soc Ind Appl Math Rev 18: 161–229

    MathSciNet  MATH  Google Scholar 

  • Lindemann CB, Orlando A, Kanous KS (1992) The flagellar beat of rat sperm is organised by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition. J Cell Sci 102: 249–260

    Google Scholar 

  • Machin KE (1958) Wave propagation along flagella. J Exp Biol 25: 796–806

    Google Scholar 

  • Okuno M, Brokaw CJ (1981) Calcium-induced change in form of demembranated sea urchin sperm flagella immobilised by vanadate. Cell Motil 1: 349–362

    Article  Google Scholar 

  • Paschal BM, King SM, Moss AG, Collins CA, Vallee RB, Witman GB (1987) Isolated flagella outer arm dynein translocates brain microtubules in vitro. Nature 330: 672–674

    Article  ADS  Google Scholar 

  • Pybus J, Tregear R (1972) Estimates of force and time of actomyosin interaction in an active muscleand the number interacting at one time. Cold Spring Harbor Symp Quant Biol 37: 655–660

    Google Scholar 

  • Sale WS (1986) The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails. J Cell Biol 102: 2042–2052

    Article  Google Scholar 

  • Sale WS, Satir P (1977) Direction of active sliding of microtubules in Tetrahymena cilia. Proc Nat Acad Csi USA 74: 2045–2049

    Article  ADS  Google Scholar 

  • Satir P (1965) Studies on cilia. II. Examination of the distal region of the ciliary shaft and the role of the filaments in motility. J Cell Biol 26: 805–834

    Article  Google Scholar 

  • Satir P (1968) Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility. J Cell Biol 39: 77–94

    Article  Google Scholar 

  • Satir P, (1982) Mechanisms and controls of microtubule sliding in cilia. Symp Soc Exp Biol 35: 172–201

    Google Scholar 

  • Satir P, (1985) Switching mechanisms in the control of ciliary motility. Mod Cell Biol 4: 1–46

    Google Scholar 

  • Satir P, Matsuoka T (1989) Splitting the ciliary axoneme: Implications for a switch-point model of dynein arm activity in ciliary motion. Cell Motil Cytoskel 14: 345–358

    Article  Google Scholar 

  • Satir P, Sleigh MA (1990) The physiology of cilia and mucociliary interactions. Ann Rev Physiol 52: 137–155

    Article  Google Scholar 

  • Shen JS, Tam PY, Shack WJ, Lardner TJ (1975) Large amplitude motion of self- propelling slender filaments at low Reynolds numbers. J Biomech 8: 229–241

    Article  Google Scholar 

  • Silvester NR, Holwill MEJ (1972) An analysis of hypothetical flagellar waveforms. J Theor Biol 35: 505–523

    Article  Google Scholar 

  • Sleigh MA, Holwill MEJ (1969) Energetics of ciliary movement in Sabellaria and Mytilus. J Exp Biol 50: 733–743

    Google Scholar 

  • Sugrue P, Avolio J, Satir P, Holwill MEJ (1991) Computer modelling of Tetrahymena axonemes at macromolecular resolution: Interpretation of electron micrographs. J Cell Sci 98: 5–16

    Google Scholar 

  • Summers KE, Gibbons IR (1971) Adenosine triphosphate-induced sliding of microtubules in trypsin treated flagella of sea urchin sperm. Proc Nat Acad Sci USA 68: 3092–9096

    Article  ADS  Google Scholar 

  • Takahashi K, Shingyoji C, KamimuraS (1982) Microtubule sliding in reactivated flagella Symp Soc Exp Biol 35: 159–177

    Google Scholar 

  • Vale RD, Soil DR, Gibbons IR (1989) One-dimensional diffusion of microtubules bound to flagellar dynein. Cell 59: 915–925

    Article  Google Scholar 

  • Wais-Steider J, Satir P (1979) Effect of vanadate on gill cilia: Switching mechanism in ciliary beat. J Supramolec Struct 11: 339–347

    Article  Google Scholar 

  • Warner FD (1983) Organisation of interdoublet links in Tetrahymena cilia. Cell Motil 3: 321–332

    Article  Google Scholar 

  • Warner FD, Satir P (1974) The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol 63: 35–63

    Article  Google Scholar 

  • Witman GB, Carlson K, Berliner J, Rosenbaum J (1972) Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes and mastigonemes. J Cell Biol 54: 507–539

    Article  Google Scholar 

  • Witman GB, Plummer J, Sander R (1978) Chlamydomonas flagellar mutants lacking radial spokes and central tubules. J Cell Biol 76: 729–747

    Article  Google Scholar 

  • Woolley DM and Brammall A (1987) Direction of sliding and relative sliding velocities within trypsinized sperm axonemes of Gallus domesticus. J Cell Sci 88: 361–371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holwill, M.E.J. (1994). Mechanical Aspects of Ciliary Propulsion. In: Akkaş, N. (eds) Biomechanics of Active Movement and Division of Cells. NATO ASI Series, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78975-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78975-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78977-9

  • Online ISBN: 978-3-642-78975-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics