Skip to main content

The genetic response of plant populations to a changing environment: the case for non-Mendelian processes

  • Conference paper
Biodiversity, Temperate Ecosystems, and Global Change

Part of the book series: NATO ASI Series ((ASII,volume 20))

Abstract

Classical Mendelian inheritance assumes the existence of chromosomal genes which are transferred from the parents to the next generation in a random fashion. In a diploid plant species, the zygote is derived from the fusion of two haploid gametes, one contributed by its maternal and one by its paternal parent. These gametes were formed after a random segregation during meiosis in each parent. The fertilization of the female (egg) by the male gamete (pollen) is likewise thought to be random. Therefore, when no internal or external factors are operating, the genetic composition of the progeny population can be described with statistical precision by the laws of probability theory. Fundamental principles are regular segregation and independent assortment between different pairs of alleles (Grant 1975). Based on these assumptions a whole body of population and quantitative genetic theory has been developed for plant population changes under the evolutionary forces of natural selection, mutation, migration and drift (i.e. Falconer 1989; Hedrick 1985). The models have been verified in a large set of observational and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderssen E (1965) Cone and seed studies in Norway spruce (Picea abies (L.) Karst.). Stud For Suec 23: 1–214

    Google Scholar 

  • Bjernstad t1 (1981) Photoperiodical after-effect of parent plant environment in Norway

    Google Scholar 

  • spruce (Picea abies (L.) Karst.) seedlings. Medd Nor Inst Skogforsk 36: 1–30 Casper BB (1988) Evidence for selective embryo abortion in Crytantha flava Am Nat 132: 318–326

    Google Scholar 

  • Charlesworth D (1988) Evidence for pollen competition in plants and its relationship to progeny fitness: a comment. Am Nat 132: 298–302

    Article  Google Scholar 

  • Cox, RM (1989) Natural variation in sensitivity of reproductive processes in some boreal forest trees to acidity. Pages 77–88 in Scholz F, Gregorius HR, Rudin

    Google Scholar 

  • D (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Cullis CA (1987) The generation of somatic and heritable variation in response to stress Am Nat 130: S62 - S73

    Google Scholar 

  • Cullis CA (1990) DNA rearrangements in response to environmental stress. Advances in Genetics 28: 73–97

    Article  CAS  Google Scholar 

  • Cullis CA (1991) Molcular characterization of plant reponses to stress. Pages 245–264 in Taylor GE, Pitelka LF and Clegg MT (eds) Ecological genetics and air pollution. Springer-Verlag, New York, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Dormling I, Johnsen 0 (1992) Effects of the parental environment on full-sib families of Pinus sylvestris. Can. J. For. Res. 22: 88–100

    Google Scholar 

  • Durrant A (1958) Environmental conditioning of flax. Nature 181: 928–929 Eisikowitch D, Woodell SRJ (1975) Some aspects of pollination ecology of Armeria maritima in Britain. New Phyt 74: 307–322

    Google Scholar 

  • Ekberg I, Eriksson G, Dormling X (1979) Photoperiodic reactions in conifer species. Holarct Ecol 2: 255–263

    Google Scholar 

  • El-Kassaby YA, Ritland K (1992) Frequency-dependent male reproductive success in a polycross of Douglas fir. Theor Appl Genet 83: 752–758

    Google Scholar 

  • Falconer DS (1989) Introduction to quantitative gentics. 3rd ed. Longman Group Feder WA (1986) Predicting species response to ozone using a pollen screen. Pages 89–94 in Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer-Verlag, New York

    Google Scholar 

  • Frova C, Binelli G, Ottaviano E (1986) Male gametophyte response to high temperatures in maize. Pages 33–38 in Mulcahy DL, Mulcahy GB, Ottaviano

    Google Scholar 

  • E (eds) Biotechnology and ecology of pollen. Springer-Verlag, New York

    Google Scholar 

  • Gillet E, Gregorius HJ (1992) What can be inferred from open-pollinated progenies about the source of observed segregation distortion?–A case study in Castanea sativa Mill. Silvae Genet 41: 82–87

    Google Scholar 

  • Grant V (1975) Genetics of flowering plants. Columbia University Press New York Hedrick PW 1985 Genetics of populations. Jones and Bartlett Publishers Boston Hodgkin T (1988) In vitro pollen selection in Brassica napus L. Pages 57–62 in Cresti

    Google Scholar 

  • M, Goro P, Pacini E (eds) Sexual reproduction in higher plants. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Hoffman AA, Parsons PA (1991) Evolutionary Genetics and Environmental Stress. Oxford University Press, Oxford

    Google Scholar 

  • Hormaza JI, Herrero M. (1992) Pollen selection. Theor Appl Genet 83: 663–672

    Article  Google Scholar 

  • Jablonka E, Lachmann M, Lamb MJ (1992) Evidence, mechanisms and models for the inheritance of acquired characters. J Theor Biol 158: 245–268

    Article  Google Scholar 

  • Johnsen 0 (1988) After-effects on progenies from seed orchard clones moved to nonnative environments. Pages 1–11 in Worral J, Loo- Dinkins J, Lester DT: Physiology and genetics of reforestation. Proc of the Tenth North American Forest Biology Workshop, Vancouver BC

    Google Scholar 

  • Johnsen 0 (1989a) Phenotypic changes in progenies of northern clones of Picea abies (L.) Karst. grown in a southern seed orchard. I. Frost hardiness in a phytotron environment. Scand J For Res 4: 317–330

    Article  Google Scholar 

  • Johnsen o, Skreppa T (1992) Possible influence of natural and artificial selection on autumn frost hardiness in Picea abies. Medd Skogforsk 45. 3

    Google Scholar 

  • Johnsen 0, Ostreng G (1993) Effects of plus tree selection and seed orchard environment on progeies of Picea abies Can J For Res. In press

    Google Scholar 

  • Lenski RE, Mittler JE (1993) The directed mutation controversy and neo-Darwinism.Science 259: 188–194

    CAS  Google Scholar 

  • Luza JG, Polito VS, Weinbaum SA (1987) Staminate bloom date and temperature responses of pollen germination and tube growth in two walnut (Juglans) species. Amer J Bot 74: 1898–1903

    Article  Google Scholar 

  • Matzke M, Matzke AJM (1993) Genomic inprinting in plants. Parental effects and trans-inactivation phenomena. Ann Rev Plant Physiol Plant Mol Biol 44: 53–76

    Article  CAS  Google Scholar 

  • Marshall, DL, Ellstrand NC (1988) Effective mate choice in wild raddish: evidence for selective seed abortion and its mechanism. Am Nat 131: 739–756

    Article  Google Scholar 

  • Mascarenas JP (1989) The male gametophyte of flowering plants. The Plant Cell 1: 657–664

    Article  Google Scholar 

  • McClintock B (1984) The significance of reponses of the genome to challenge. Science 226: 792–801

    Article  PubMed  CAS  Google Scholar 

  • Moe D (1970) The post-glacial immigration of Picea abies into Fennoscandia. Bot Notiser 123: 61–66

    Google Scholar 

  • Mulcahy DL (1979) The rise of the angiosperms: A genecological factor. Science 206: 20–23

    Article  PubMed  CAS  Google Scholar 

  • Mulinix CA, Iezzoni AF (1988) Microgametic selelction in two alfalfa (Medocago sativa L.) clones. Theor Appl Genet 75: 917–922

    Google Scholar 

  • Nakamura RK, Wheeler, NC (1992) Pollen competition and paternal success in Douglas-fir. Evolution 46: 846–851

    Article  Google Scholar 

  • Nielsen UB (1993) Genetic variation in sitka spruce (Picea sitchensis (Bong.) Carr.) regarding height growth, stem form and frost hardiness at the provenance,progeny and clonal level based on Danish field trials. Unpublished PhD.dissert. The Royal Veterinary and Agricultural University, Copenhagen

    Google Scholar 

  • Ottaviano E, Mulcahy DL (1986) Pages 101–120 in Barigozzy C (ed) The origin and domestication of cultivated plants Elsevier, Amsterdam

    Google Scholar 

  • Ottaviano E, Sari-Gorla M, Frova C, Pè E (1988) Male gametophytic selection in higher plants Pages 35–42 in Cresti M, Gori P, Pacini E (eds) Sexual reproduction in higher plants. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Ottaviano E, Sari-Gorla M, Pè E (1982) Male gametophytic selection in maize. Theor Appl Genet 76: 601–608

    Google Scholar 

  • Ottaviano E, Sari-Gorla M, Villa M (1988) Pollen competitive ability in maize: within population variability and response to selection. Theor Appl Genet 76: 601–608

    Article  Google Scholar 

  • Owens JN, Blake MD (1985) Forest tree seed production. Information Report PI-X-53 Petawawa National Forestry Institute Chalk River Ontario

    Google Scholar 

  • Pedersen S, Simonsen V, Loeschcke V (1987) Overlap of gametophytic and sporophytic gene expression in barley. Theor Appl Genet 75: 200–206

    Article  Google Scholar 

  • Pfahler PL(1983) Comparative effectiveness of pollen genotype selection in higher plants. Pages 361–366 in Mulcahy DL, Ottaviano E (eds). Pollen: biology and implications for plant breeding Elsevier, New York, Amsterdam, Oxford

    Google Scholar 

  • Polito VS, Weinbaum SA, Muraoka TT (1991) Adaptive responses of walnut pollen germination to temperature during pollen development. J Amer Soc Hort Sci 116: 552–554

    Google Scholar 

  • Rajora OP, Zsuffa L (1986) Sporophytic and gametophytic gene expression in Populus deltoides Marsh., P. nigra L., and P. maximowiczii Henry. Can J Gent Cytol 28: 476–482

    Google Scholar 

  • Richter J, Powles SB (1993) Pollen expression of herbicide targe site resistance genes in annual ryegrass (Lolium rigidum). Plant Physiol 102: 1037–1041

    PubMed  CAS  Google Scholar 

  • Robert T, Sarr A, Pernès (1989) Sélections sur la phase haploide chez le Mil (Pennisetum typhoides (Burm.) Stapf et Hubb.): effet de la température. Genome 32: 946–952

    Google Scholar 

  • Rowe, JS (1964) Environmental preconditioning with special reference of forestry. Ecology 45: 399–403

    Article  Google Scholar 

  • Sacher RF, Mulcahy DL, Staples RC (1983) Developmental selection during self pollination of Lycopersicon x Solanum F, for salt tolerance to F2. Pages 335342 in Mulcahy DL, Ottaviano E (eds). Pollen: biology and implications for plant breeding. Elsevier, New York, Amsterdam, Oxford

    Google Scholar 

  • Sari-Gorla M, Frova C, Binelli G, Ottaviano E (1986) The extent of gametophytic-sporophytic gene expression in maize. Theor Appl Genet 72: 42–47

    Article  CAS  Google Scholar 

  • Schmidt-Vogt H (1978) Genetics of Picea abies (L.) Karst. Annales Forestales 7: 145-Schön CC, Hayes PM, Blake TK, Knapp SJ (1991) Gametophytic selection in a winter x spring barley cross. Genome 34: 918–922

    Google Scholar 

  • Searcy KB, Macnair MR (1993) Developmental selection in response to the environmental conditions of the maternal parent in Mimulus guttatus. Evolution 47: 13–24

    Article  Google Scholar 

  • Searcy KB, Mulcahy DL (1985a) The parallel expression of metal tolerance in pollen and sporophytes of Silene dioica (L.) Clairv., Silene alba (Mill.) Krause and Mimulus guttatus DC. Theor Appl Genet 69: 597–602

    Article  Google Scholar 

  • Searcy KB, Mulcahy DL (1985b) Pollen tube competition and selection for metal tolerance in Silene dioica (Caryophyllaceae) and Mimulus guttatus ( Scrophulariaceae ). Amer J Bot 72: 1695–1699

    Google Scholar 

  • Searcy KB, Mulcahy DL (1985c) Pollen selection and the gametophytic expression of metal tolerance in Silene dioica (Caryophyllaceae) and Mimulus guttatus ( Scrophulariaceae ). Amer J Bot 72: 1700–1706

    Google Scholar 

  • Searcy KB, Mulcahy DL (1990) Comparison of the response to aluminium toxicity in gametophyte and sporophyte of four tomato (Lycopersicon esculentum Mill.) cultivars. Theor Appl Genet 80: 289–295

    Article  CAS  Google Scholar 

  • Snow AA, Spira TP (1991) Pollen vigour and the potential for sexual selection in plants. Nature 352: 796–797

    Article  Google Scholar 

  • Smith GA, Moser HS (1985) Sporophytic-gametophytic herbicide tolerance in sugarbeet. Theor Appl Genet 71: 231–237

    Article  Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Ann Rev Ecol Syst 12: 253–279

    Article  Google Scholar 

  • Tanksley SD, Zamir D, Rick CM (1981) Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science 213: 453–455

    Article  PubMed  CAS  Google Scholar 

  • Venne H, Scholz F, Vornweg A (1989) Effects of air pollutants on reproductive processes of poplar (Populus ssp.) and Scots pine (Pinus sylvestris L.). Pages 89–103 in Scholz F, Gregorius HR, Rudin D (eds) Genetic effects of air pollutants in forest tree populations. Springer-Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Walbot V, Cullis CA (1985) Rapid genomic changes in higher plants. Ann Rev Plant Phys 36: 367–396

    Article  CAS  Google Scholar 

  • Weeden NF (1986) Identification of duplicate loci and evidence for postmeiotic gene expression in pollen. Pages 9–14 in Mulcahy DL, Mulcahy GB, Ottaviano E (eds) Biotechnology and ecology of pollen. Springer-Verlag, New York

    Chapter  Google Scholar 

  • Young HJ, Stanton ML (1990) Influence of environmental quality on pollen competitive ability in wild radish. Science 248: 1631–1633

    Article  PubMed  CAS  Google Scholar 

  • Zamir D (1983) Pollen gene expression and selection: applications in plant breeding. Pages 313–329 in Tanksley SD, Orton TS (eds) Isozymes in plant genetics and breeding, Part A

    Google Scholar 

  • Zamir D, Gadish I (1987) Pollen selection for low temperature adaptation in tomato. Theor Appl Genet 74: 545–548

    Article  Google Scholar 

  • Zamir D, Thanksley SD, Jones RA (1981) Low temperature effect and selective fertilization by pollen mixtures of wild and cultivated tomato species. Theor Appl Genet 59: 235–238

    Google Scholar 

  • Zamir D, Thanksley SD, Jones RA (1982) Haploid selection for low temperature tolerance of tomato pollen. Genetics 101: 129–137

    PubMed  CAS  Google Scholar 

  • Zamir D, Vallejos EC (1983) Temperature effects on haploid selection of tomato microspores and pollen grain. Pages 335–342 in Mulcahy DL, Ottaviano E (eds). Pollen: biology and implications for plant breeding. Elsevier, New York, Amsterdam, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skrøppa, T., Johnsen, Ø. (1994). The genetic response of plant populations to a changing environment: the case for non-Mendelian processes. In: Boyle, T.J.B., Boyle, C.E.B. (eds) Biodiversity, Temperate Ecosystems, and Global Change. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78972-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78972-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78974-8

  • Online ISBN: 978-3-642-78972-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics