Skip to main content

Biodiversity and Nutrient Relations in Savanna Ecosystems: Interactions Between Primary Producers, Soil Microorganisms, and Soils

  • Chapter
Biodiversity and Savanna Ecosystem Processes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 121))

Abstract

Availability of resources (light, water, nutrients) determines the amount of biomass that may be produced in a given environment (Chapin 1980; Tilman 1988; McNaughton 1990). This production of biomass can be brought about by assemblages of primary producers composed of widely different species. Similar environments on different continents attain the same level of organic matter production, and are occupied by more or less equivalent ecosystems in regard to structure and function (Walter 1973). Higher production is the result of efficient trapping of available resources. The capacity for trapping available resources would depend on the ability of the species assemblage to occupy the space: intercept incident light and take up soluble nutrients and water. This ability is regulated by intrinsic factors characteristic of each species such as plant habit, size, specific growth rate, phenology, and physiological requirements. Biological interactions extrinsic to the primary producers are also important and include interspecific competition, organic matter decomposition, and the presence of symbiotic and mutualistic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arias I, Koomen I, Dodd JC, White RP, Hayman DS (1991) Growth responses of mycorrhizal and nonmycorrhizal tropical forage species to different levels of soil phosphate. Plant Soil 131: 253–260

    Google Scholar 

  • Belsky AJ (1992) Effects of trees on nutritional quality of understorey gramineous forage in tropical savannas. Trop Grassi 26: 12–20

    Google Scholar 

  • Belsky AJ, Amundson RG (1992) Effects of trees on understory vegetation and soils at forest-savanna boundaries. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, chap 17. Chapman & Hall, London, pp 353–366

    Google Scholar 

  • Belsky AJ, Amundson RG, Duxbury JM, Riha SJ, Ali AR, Mwonga SM (1989) The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. J Appl Ecol 26: 1005–1024

    Article  Google Scholar 

  • Belsky AJ, Mwonga SM, Amundson RG, Duxbury JM, Ali AR (1993) Comparative effects of isolated trees on their under canopy environments in high-and low-rainfall savannas. J Appl Ecol 30: 143–155

    Article  Google Scholar 

  • Bulla L, Sanchez P, Silvio C, Maldonado A, De Sola R, Lira A (1984) Ecosistema sabana. Bases para el disefio de medidas de mitigación y control de las cuencas hidrograficas de los nos Caris y Pao (Edo. Anzoategui), vol 1. Inst Zool Trop Fac Cienc Univ Cent Venezuela, Caracas, pp 36–125

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11: 233–260

    Article  CAS  Google Scholar 

  • Cole MM (1986) The savannas: biogeography and geobotany. Academic Press, London

    Google Scholar 

  • Crush JR (1974) Plant growth responses to vesicular-arbuscular mycorrhiza VII. Growth and nodulation of some herbage legumes. New Phytol 73: 743–752

    Article  CAS  Google Scholar 

  • Cuenca G, Lovera M (1992) Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana, Venezuela. Can J Bot 70: 73–79

    Article  Google Scholar 

  • Eiten G (1972) The Cerrado vegetation of Brazil. Bot Rev 38: 201–341

    Article  Google Scholar 

  • Felfili JM, da Silva jr MC (1993) A comparative study of cerrado (sensu stricto) vegetation in Central Brazil. J Trop Ecol 9: 277–289

    Article  Google Scholar 

  • Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazil cerrado and their development. J Biogeogr 15: 97–108

    Article  Google Scholar 

  • Georgiadis NJ (1989) Microhabitat variation in an African savanna: effects of woody cover and herbivores in Kenya. J Trop Ecol 5: 93–108

    Article  Google Scholar 

  • Goodland R, Ferri MG (1979) Ecologia do Cerrado. Sao Paulo. Univ Sao Paulo, Brazil

    Google Scholar 

  • Goodland R, Pollard R (1972) The Brazilian Cerrado vegetation: a fertility gradient. J Ecol 61: 219–224

    Google Scholar 

  • Haridasan M (1992) Observations on soils, foliar nutrient concentrations and floristic composition of Cerrado sensu stricto and cerradäo communities in central Brazil. In: Furley PA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, chap 9. Chapman & Hall, London, pp 171–184

    Google Scholar 

  • Huntley BJ (1982) Southern African savannas. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin Heidelberg New York, pp 101–119

    Chapter  Google Scholar 

  • Isichei AO, Muoghalu JI (1992) The effects of the tree canopy cover on soil fertility in a Nigerian savanna. J Trop Ecol 8: 329–338

    Article  Google Scholar 

  • Izaguirre-Mayoral ML, Carballo O, Flores S, de Mallorca MS, Oropeza T (1992) Quantitative analysis of the symbiotic N2 fixation, non-structural carbohydrates and chlorophyll content in sixteen native legume species collected in different savanna sites. Symbiosis 12: 293–312

    CAS  Google Scholar 

  • Johnson NC, Zak DR, Tilman D, Pfleger FL (1991) Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia 86: 349–358

    Article  Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73: 2034–2042

    Article  Google Scholar 

  • Kellman M (1979) Soil enrichment by neotropical savanna trees. J Ecol 67: 565–577

    Article  CAS  Google Scholar 

  • Lopes A S, Cox FR (1977) A survey of the fertility status of surface soils under cerrado vegetation of Brazil. J Soil Sci Am 41: 742–747

    Article  CAS  Google Scholar 

  • Lugo AE (1988) Diversity of tropical species: questions that elude answers. Biol Int Spec Issue 19: 1–37

    Google Scholar 

  • McNaughton S (1990) Mineral nutrition and spatial concentrations of African ungulates. Nature 334: 343–345

    Article  Google Scholar 

  • McNaughton S (1991) Dryland herbaceous perennials. In: Mooney HA, Winner WE, Pell EJ (eds) Response of plants to multiple stresses. Academic Press, San Diego, pp 307–328

    Google Scholar 

  • Medina E (1982) Physiological ecology of neotropical savanna plants. In: Huntley BJ, Walker BH (eds) Ecology of Tropical Savannas. Ecological Studies 42. Springer Berlin Heidelberg New York, pp 308–335

    Google Scholar 

  • Medina E (1987) Nutrient requirements, conservation and cycles in the herbaceous layer. In: Walker B (ed) Determinants of savannas. IRL Press, Oxford, pp 39–65

    Google Scholar 

  • Medina E, Bilbao B (1991) Significance of nutrient relations and symbiosis for the competitive interaction between grasses and legumes in tropical savannas. In: Esser G, Overdieck D (eds) Modern ecology. Elsevier, Amsterdam, pp 295–319

    Google Scholar 

  • Medina E, Huber O (1992) The role of biodiversity in the functioning of savanna ecosystems. In: Solbrig OT, van Emden HM, van Oordt PGWJ (eds) Biodiversity and global change, Monogr 8, Chap 13. Int Union Biol Sci, Paris, pp 139–158

    Google Scholar 

  • Medina E, Silva J (1990) Savannas of northern South America: a steady state regulated by waterfire interactions on a background of low nutrient availability. J Biogeogr 17: 403–413

    Article  Google Scholar 

  • Medina E, Mendoza A, Montes R (1982) Nutrient balance and organic matter production of the Trachypogon savannas of Venezuela. Trop Agric 55: 243–253

    Google Scholar 

  • Mordelet P, Abbadie L, Menaut JC (1993) Effects of tree clumps on soil characteristics in a humid savanna of West Africa ( Lamto, Côte d’Ivoire). Plant Soil 153: 103–111

    Article  Google Scholar 

  • O’Connor TG (1985) A synthesis of field experiments concerning the grass layer in the savanna regions of southern Africa. S Afr Nat Sci Progr Rep 114, Pretoria, FDR, CSIR

    Google Scholar 

  • Oliveira-Filho ATD, Shepherd G J, Martins FR, Stubblebine WH (1989) Environmental factors affecting physiognomic and floristic variation in an area of cerrado in central Brazil. J Trop Ecol 5 (4): 413–431

    Article  Google Scholar 

  • Ratter JA, Dargie TCD (1992) An analysis of the floristic composition of 26 cerrado areas in Brazil. Edinb J Bot 49: 235–250

    Article  Google Scholar 

  • Saif SR (1986) Vesicular-arbuscular mycorrhizae in tropical forage species as influenced by season, soil texture, fertilizers, host species and ecotypes. Angew Bot 60: 125–139

    Google Scholar 

  • Sarmiento G (1983) The savannas of tropical America. In: Bourlière F (ed) Tropical savannas. Ecosystems of the world, vol 13. Elsevier, Amsterdam, pp 246–288

    Google Scholar 

  • Sarmiento G (1992) A conceptual model relating environmental factors and vegetation formations in the lowlands of tropical South America. In: Furley FA, Proctor J, Ratter JA (eds) Nature and dynamics of forest-savanna boundaries, Chap. 9. Chapman & Hall, London, pp 583–601

    Google Scholar 

  • Susach F (1984) Caraterización ecológica de las sabanas de un sector de los Llanos Bajos de Venezuela. Tesis Doctoral. Univ Cent Venezuela, Fac Cienc, Caracas

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton Univ Press, Princeton

    Google Scholar 

  • Tilman D (1990) Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58: 3–15

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238: 802–804

    Article  CAS  Google Scholar 

  • Walker B H, Noy-Meir E (1982) Aspects of stability and resilience of savannas ecosystems. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin Heidelberg New York, pp 577–590

    Google Scholar 

  • Walter H (1973) Die Vegetation der Erde in ökophysiologischer Betrachtung. Band 1. Die tropischen und subtropischen Zonen. Fischer, Jena

    Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84: 433–441

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Medina, E. (1996). Biodiversity and Nutrient Relations in Savanna Ecosystems: Interactions Between Primary Producers, Soil Microorganisms, and Soils. In: Solbrig, O.T., Medina, E., Silva, J.F. (eds) Biodiversity and Savanna Ecosystem Processes. Ecological Studies, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78969-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78969-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78971-7

  • Online ISBN: 978-3-642-78969-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics