Alpine Plant Diversity: A Global Survey and Functional Interpretations

  • Ch. Körner
Part of the Ecological Studies book series (ECOLSTUD, volume 113)


High-altitude vegetation is often treated as a special type of tundra, but this is an inadequate simplification. The major common features of real tundra and “alpine vegetation” are the absence of trees, the short stature of plants, and the low annual mean temperature. Most other components of the alpine environment may differ substantially from arctic tundra environments (Table 1; Bilhngs 1973, 1979a). The term “alpine” is used here exclusively for the vegetation above the natural subalpine tree line. Often this boundary is unsharp and is fragmented over several hundred meters of altitude. Where an upper tree line is missing, as in many arid mountain regions, the approximate level of the tree hne in the nearest more humid mountains is taken as a rough guidehne. At the polar end of the alpine vegetation, there is no clear distinction between the arctic-alpine and the arctic-lowland flora. Depending on region, most arctic-alpine vegetation north of 65° to 70°N is possibly better included in the term arctic (similar climate and species composition).


Alpine Plant Global Survey Functional Interpretation Alpine Ecosystem Alpine Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armand AD (1992) Sharp and gradual mountain timberlines as a result of species interaction. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Springer, Berlin Heidelberg New York, pp 360–378CrossRefGoogle Scholar
  2. Bahn M, Körner Ch (1987) Vegetation und Phänologie der hochalpinen Gipfelflur des Glungezer in Tirol. Ber Naturwiss Med Ver Innsbruck 74:61–80Google Scholar
  3. Billings WD (1973) Arctic and alpine vegetations: similarities, difl’erences, and susceptibility to disturbance. Bioscience 23:697–704CrossRefGoogle Scholar
  4. Billings WD (1974) Adaptations and origins of alpine plants. Arct Alp Res 6:129–142CrossRefGoogle Scholar
  5. Billings WD (1978) Alpine phytogeography across the Great Basin. In: Intermountain bio geography, a symposium. Great Basin Nat Mem 2:105–117Google Scholar
  6. Billings WD (1979a) Alpine ecosystems of western North America. In: Johnson DA (ed) Special management needs of alpine ecosystems. Society for Range Management, Denver pp 6–21Google Scholar
  7. Billings WD (1979b) High mountain ecosystems. In: Webber P J (ed) High altitude geoecology. American Association for the Advancement of Science, West view Press Boulder, pp 97–125Google Scholar
  8. Billings WD (1988) Alpine vegetation. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, New York, pp 391–420Google Scholar
  9. Bortenschlager S (1993) Das höchst gelegene Moor der Ostalpen “Moor am Rofenberg” 2760m. Festschrift Zoller, Diss Bot 196:329–334Google Scholar
  10. Braun-Blanquet J (1923) Über die Genesis der Alpenflora. Verh Naturforsch Ges Basel 35: 243–261Google Scholar
  11. Breckle SW (1974) Notes on alpine and nival flora of the Hindu Kush, east Afghanistan. Bot Not 127: 278–284Google Scholar
  12. Cernusca A (1976) Energie- und Wasserhaushalt eines alpinen Zwergstrauchbestande während einer Föhnperiode. Arch Meteorol Geophys Bioklimatol Ser B 24: 219–241CrossRefGoogle Scholar
  13. Costin AB, Gray M, Totterdell CJ, Wimbush D J (1979) Kosciusko alpine flora. CSIRO and Collins, MelbourneGoogle Scholar
  14. Diemer M (1992) Population dynamics and spatial arrangement of Ranunculus glacialis L., an alpine perennial herb, in permanent plots. Vegetatio 103: 159–166Google Scholar
  15. Egerton JJG, Wilson SD (1993) Plant competition over winter in alpine shrubland and grassland, Snowy Mountains, Australia. Arct Alp Res 25: 124–129CrossRefGoogle Scholar
  16. Halloy SRP (1983) High mountain climatology and edaphology in relation to the composition and adaptations of biotic communities (with special reference to the Cumbres Calchaquies, Tucuman, Argentina). Diss Univ Nacional de Tucuman, Argentina. University Microfilms Int. (Ann Arbor) Cat no 8502967Google Scholar
  17. Halloy S (1989) Altitudinal limits of life in subtropical mountains: what do we know? Pac Sci 43: 170–184Google Scholar
  18. Halloy S (1990) A morphological classification of plants, with special reference to the New Zealand alpine flora. J Veg Sci 1: 191–304CrossRefGoogle Scholar
  19. Halloy S (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on earth (Socompa Volcano, Andes). Arct Alp Res 23: 247–262CrossRefGoogle Scholar
  20. Hartman EL, Rottman ML (1987) Alpine vascular flora of the Ruby Range, West Elk Mountains, Colorado. Great Basin Nat 47:152–160Google Scholar
  21. Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suec 49: 8–89Google Scholar
  22. Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Kölner Geographische Arbeiten 5, KölnGoogle Scholar
  23. Ives JD, Hansen-Bristow KJ (1983) Stability and instability of natural and modified upper timberline landscapes in the Colorado Rocky Mountains, USA. Mountain Res Dev 3: 149–155CrossRefGoogle Scholar
  24. Järvinen A (1984) Patterns and performance in a Ranunculus glacialis population in a mountain area in Finnish Lapland. Ann Bot Fenn 21: 179–187Google Scholar
  25. Johnson PL, Billings WD (1962) The alpine vegetation of the Beartooth Plateau in relation to cryopedogenic processes and patterns. Ecol Monogr 32: 105–135CrossRefGoogle Scholar
  26. Körner Ch (1980) Zur anthropogenen Belastbarkeit der alpinen Vegetation. Verh Ges Ökol (Göttingen) 8: 451–461Google Scholar
  27. Körner Ch (1984) Auswirkungen von Mineraldünger auf alpine Zwergsträucher. Verh Ges Ökol (Göttingen) 12: 123–136Google Scholar
  28. Körner Ch (1989) Der Flächenanteil unterschiedlicher Vegetationseinheiten in den Hohen Tauern: eine quantitative Analyse großmaßstäblicher Vegetationskartierungen in den Ostalpen. In: Cernusca A (ed) Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern. Veröffentl Österr MaB-Programm 13:33–47, Wagner, InnsbruckGoogle Scholar
  29. Köner Ch (1992) Response of alpine vegetation to global climate change. CATENA Suppl 22:85–96Google Scholar
  30. Körner Ch (1994a) Biomass fractionation in plants-a reconsideration of definitions based on plant functions. In: Roy J, Gamier E (eds) A whole plant perspective on carbon-nitrogen interactions SPB Acad Publishing, The Hague, pp 213–225Google Scholar
  31. Körner Ch (1994b) Impact of atmospheric changes on high mountain vegetation. In: Benniston M (ed) Mountain environments in changing climates. Routledge, London-New York, pp 155–166CrossRefGoogle Scholar
  32. Körner Ch, Larcher W (1988) Plant life in cold climates. In: Long SF, Woodward FI (eds) Plants and temperature. Symp Soc Exp Biol 42:25–57. The Company of Biol, CambridgeGoogle Scholar
  33. Körner Ch, Pelaez Menendez-Riedl S (1989) The significance of developmental aspects in plant growth analysis. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Acad Publ, The Hague, pp 141–157Google Scholar
  34. Körner Ch, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74:411–418CrossRefGoogle Scholar
  35. Körner Ch, Woodward FI (1987) The dynamics of leaf extension in plants with diverse altitudinal ranges. II. Field studies in Poa species between 600 and 3200 m altitude. Oecologia 72:279–283CrossRefGoogle Scholar
  36. Körner Ch, Diemer M, Schäppi B, Zimmermann L (1995) The response of alpine vegetation to elevated CO2. In: Koch G, Mooney HA (eds) “Terrestrial ecosystem response to elevated CO2.” Physiological Ecology Series. Academic Press (in press)Google Scholar
  37. Larcher W (1980) Klimastress im Gebirge – Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westf Akad Wiss Vortr N 291:49–88Google Scholar
  38. Larcher W, Wagner J (1983) Ökologischer Zeigerwert und physiologische Konstitution von Sempervivum montanum. Verh Ges Ökol (Göttingen) 11:253–264Google Scholar
  39. Lavin M (1983) Floristic of the upper Walker River, California and Nevada. Great Basin Nat 43:93–130Google Scholar
  40. Loope LL (1969) Subalpine and alpine vegetation of northeastern Nevada. PhD thesis, Duke University, Durham, NCGoogle Scholar
  41. Matveyeva NV (1988) The horizontal structure of tundra communities. In: Werger MJA, van der Aart PJM, During HJ (eds) Plant form and vegetation structure. SPB Academic Pubhshing, The Hague, pp 59–65Google Scholar
  42. Merxmiiller H (1954) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Verein z Schutz d Alpenpflanzen und-tiere 19, MünchenGoogle Scholar
  43. Messerli B (1983) Stability and instability of mountain ecosystems: introduction to a workshop sponsored by the United Nations University. Mountain Res Dev 3:81–94CrossRefGoogle Scholar
  44. Miehe G (1989) Vegetation patterns on Mount Everest as influenced by monsoon and föhn. Vegetatio 79:21–32CrossRefGoogle Scholar
  45. Moore TC (1965) Origin and disjunction of the alpine tundra flora on San Francisco Mountain, Arizona. Ecology 46:860–864CrossRefGoogle Scholar
  46. Murray DF (1992) Vascular plant diversity in Alaskan arctic tundra. North West Environ J 8:29–52Google Scholar
  47. Nilsson O (1986) Nordisk fjällflora, Bonniers, GöteborgGoogle Scholar
  48. Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Gustav Fischer, StuttgartGoogle Scholar
  49. Ozenda P (1993) Etage alpin et Toundra de montagne: parenté ou convergence? Fragm Florist Geobot Suppl 2:457–471Google Scholar
  50. Pisek A, Larcher W, Vegis A, Napp-Zinn K (1973) The normal temperature range. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin Heidelberg New York, pp 102–194Google Scholar
  51. Polunin O, Stainton A (1984) Flowers of the Himalaya. Oxford University Press, OxfordGoogle Scholar
  52. Pyankov VI, Mokronosov AT (1993) General trends in changes of the earth’s vegetation related to global warming. Russian J Plant Physiol 40:515–531Google Scholar
  53. Rikh M (1917) Die den 80° n erreichenden oder überschreitenden Gefässpflanzen. Vierteljahresschr Naturforsch Ges Zürich 62:169–193Google Scholar
  54. Rominger JM, Paulik LA (1983) A floristic inventory of the plant communities of the San Francisco Peaks Research Natural Area. USDA Forest Service, General Technical Report RM-96, Fort CollinsGoogle Scholar
  55. Slatyer RO, Noble IR (1992) Dynamics of montane treehnes. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Springer, Berhn Heidelberg New York, pp 346–359CrossRefGoogle Scholar
  56. Spence JR, Shaw RJ (1981) A checklist of the alpine vascular flora of the Teton Range, Wyoming, with notes on biology and habitat preferences. Great Basin Nat 41:232–242Google Scholar
  57. Squeo A, Rada F, Azocar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382CrossRefGoogle Scholar
  58. Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3-A18Google Scholar
  59. Vareschi V (1970) Flora de los Paramos de Venezuela. Universidad de los Andes, Merida, VenezuelaGoogle Scholar
  60. Walter H, Breckle SW (1986) (eds) Ökologie der Erde. Band 3: Spezielle Ökologie der gemässigten und arktischen Zonen Euro-Nordasiens. UTB Gustav Fischer, StuttgartGoogle Scholar
  61. Wardle P (1971) An explanation of alpine timberline. NZ J Bot 9:371–402CrossRefGoogle Scholar
  62. Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 372–402Google Scholar
  63. Wohlgemuth T (1993) Der Verbreitungsatlas der Farn-und Blütenpflanzen der Schweiz (Welten und Sutter 1982) auf EDV: die Artenzahlen und ihre Abhängigkeit von verschiedenen Faktoren. Bot Helv 103:55–71Google Scholar
  64. Woodward FI (1993) The lowland-to-upland transition-modelling plant responses to environmental change. Ecol Appl 3:404–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Ch. Körner
    • 1
  1. 1.Institute of BotanyUniversity of BaselBaselSwitzerland

Personalised recommendations