MR Principles and Technology

  • L. E. Crooks
  • N. M. Hylton


This chapter provides a review of basic magnetic resonance imaging (MRI) principles with emphasis on the interactions with moving blood. An effort is made to help familiarize the reader with concepts and terminology unique to MRI. A glossary of conventional terms used in nuclear magnetic resonance has been prepared by the American College of Radiology and is recommended to the reader for standard definitions and conventions [1]. We approach this subject by first discussing the phenomenon of nuclear magnetic resonance. The topics that follow include relaxation parameters, Fourier transformation, spatial localization, the effects of imaging parameters on contrast, MR signal dependence on flow, MR angiographic techniques, instrumentation, quantitative image characteristics, and pulse sequences. The reader interested in a more thorough discussion of any of these subjects can refer to the texts referenced in the respective sections and listed at the end of the chapter.


Transverse Magnetization Free Induction Decay Magnetic Field Gradient Larmor Frequency Receiver Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axel L, ed. (1991) ACR glossary of MR terms, 3rd edn. Reston, Virginia: American College of Radiology.Google Scholar
  2. 2.
    Abragham A (1961) The principles of nuclear magnetism. Oxford: Clarendon.Google Scholar
  3. 3.
    Curry TS, Dowdey JE, Murry RC (1978) Nuclear magnetic resonance. In: Christensen EE, Curry TS, Dowdey JE (eds) Introduction to the physics of diagnostic radiology. Philadelphia: Lea and Febiger.Google Scholar
  4. 4.
    Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR. New York: Academic Press.Google Scholar
  5. 5.
    Fukushima E, Roeder ED (1981) Experimental pulse NMR: a nuts and bolts approach. Reading, MA: Addison-Wesley.Google Scholar
  6. 6.
    Mansfield P, Morris PG (1982) NMR imaging in biomedicine. New York: Academic Press.Google Scholar
  7. 7.
    Crooks LE, Mills CM, Davis PL, et al (1982) Visualization of cerebral abnormalities by NMR imaging: the effects of imaging parameters on contrast. Radiology 144: 843–852.PubMedGoogle Scholar
  8. 8.
    Damadian R (1971) Tumor detection by NMR. Science 171: 1151–1153.PubMedCrossRefGoogle Scholar
  9. 9.
    Davis PL, Kaufman L, Crooks LE, Margulis AR (1981) NMR characteristics of normal and abnormal rat tissues. In: Kaufman L, Crooks LE, Margulis AR (eds) Nuclear magnetic resonance imaging in medicine. New York: Igaku-Shoin, Inc., 71–100.Google Scholar
  10. 10.
    Koenig SH, Brown RD (1986) Relaxometry of tissue. In: CRC handbook on NMR in cells. Boca Raton: CRC Press.Google Scholar
  11. 11.
    Bottomly PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision and age. Med Phys 11: 425–448.CrossRefGoogle Scholar
  12. 12.
    Chen J-H, Avram HE, Crooks LE, Arakawa M, Kaufman L, Brito AC (1992) In vivo relaxation times and hydrogen density at 0.063–4.85 T in rats with implanted mammary adenocarcinomas. Radiology 184: 427–434.PubMedGoogle Scholar
  13. 13.
    Hahn EL (1950) Spin echoes. Phys Rev 80: 580–594.CrossRefGoogle Scholar
  14. 14.
    Bracewell RN (1978) The Fourier transform and its applications. New York: McGraw-Hill.Google Scholar
  15. 15.
    Morris PG (1986) Nuclear magnetic resonance imaging in medicine and biology. Oxford: Clarendon.Google Scholar
  16. 16.
    Kaufman I, Crooks LE, Margulis AR (eds) (1981) Nuclear magnetic resonance imaging in medicine. New York: Igaku Shoin.Google Scholar
  17. 17.
    Partain CL, Patton JA, Kulkarni MV, James AE (eds) (1988) Magnetic resonance imaging, vol II. Philadelphia: Saunders.Google Scholar
  18. 18.
    Ortendahl DA, Hylton NM, Kaufman L, et al (1984) Analytical tools for magnetic resonance imaging. Radiology 153: 479–488.PubMedGoogle Scholar
  19. 19.
    Edelstein WA, Bottomley PA, Hart HR, Smith LS (1983) Signal-to-noise and contrast in nuclear magnetic resonance. J Comput Assist Tomogr 7 (3): 391–401.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaufman L, Crooks LE, Sheldon PE, Rowan W, Miller T (1982) Evaluation of NMR imaging for detection and quantification of obstructions in vessels. Investigative Radiology 17: 554–560.PubMedCrossRefGoogle Scholar
  21. 21.
    von Schulthess GK, Fisher M, Crooks LE, Higgins CB (1985) Gated MR imaging of the heart: intracardiac signals in patients and healthy subjects. Radiology 156: 125–132.Google Scholar
  22. 22.
    Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10 (1): 135–144.PubMedCrossRefGoogle Scholar
  23. 23.
    Pike GB, Hu BS, Glover GH, Enzmann DR (1992) Magnetization transfer time-of-flight magnetic resonance angiography. Magn Reson Med 25 (2): 372 - 379.PubMedCrossRefGoogle Scholar
  24. 24.
    Hahn EL (1960) Detection of sea-water motion by nuclear precession. J Geophys Res 65: 776–777.CrossRefGoogle Scholar
  25. 25.
    Grover T, Singer JR (1971) NMR spin-echo flow measurements. J Appl Phys 42: 938–940.CrossRefGoogle Scholar
  26. 26.
    Garroway AN (1974) Velocity measurements in flowing fluids by NMR. J Phys D: Appl Phys 7: L159–163.CrossRefGoogle Scholar
  27. 27.
    Moran PR (1982) A flow zeugmatographic interlace for NMR imaging in humans. Magn Reson Imaging 1: 197–203.PubMedCrossRefGoogle Scholar
  28. 28.
    Keller PJ, Drayer BP, Fram EK, Williams KD, Dumoulin CL, Souza SP (1989) MR angiography with two-dimensional acquisition and three-dimensional display: work in progress. Radiology 173: 527–532.PubMedGoogle Scholar
  29. 29.
    Ruggieri PM, Laub GA, Masaryk TJ, Modic MT (1989) Intracranial circulation: pulse sequence considerations in three-dimensional (volume) MR angiography. Radiology 171 (3): 785–791.PubMedGoogle Scholar
  30. 30.
    Felmlee JP, Ehman RL (1987) Spatial presaturation: a method for suppressing flow artifacts and improving depiction of vascular anatomy in MR imaging. Radiology 164: 559–564.PubMedGoogle Scholar
  31. 31.
    Rossnick S, Laub G, Braeckle R, et al (1986) Three dimensional display of blood vessels in MRI. Proceedings of the IEEE Computers in Cardiology Conference, New York 193–196.Google Scholar
  32. 32.
    Constantinesco A, Mallet JJ, Bonmartin A, Lallot C, Briguet A (1984) Spatial or flow velocity phase encoding gradients in NMR imaging. Magn Reson Imaging 2: 335–340.PubMedCrossRefGoogle Scholar
  33. 33.
    Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10: 715–722.PubMedCrossRefGoogle Scholar
  34. 34.
    Nishimura DG, Macovski A, Pauly JM (1986) Magnetic resonance angiography. IEEE Trans Med Imag MI-5: 140–151.Google Scholar
  35. 35.
    Haacke EM, Lenz GW (1987) Improving MR image quality in the presence of motion by using re-phasing gradients. AJR 148: 1251–1258.PubMedGoogle Scholar
  36. 36.
    Axel L, Morton D (1987) MR flow imaging of velocity compensated/uncompensated difference images. J Comput Assist Tomogr 11: 31–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Nishimura DG, Macovski A, Jackson JI, Hu RS, Stevick CA, Axel L (1988) Magnetic resonance angiography by selective inversion recovery using a compact gradient echo sequence. Magn Reson Med 8: 96–103.PubMedCrossRefGoogle Scholar
  38. 38.
    Schmalbrock P, Yuan C, Chakeres DW, Kohli J, Pelc NJ (1990) Volume MR angiography: methods to achieve very short echo times. Radiology 175: 861–865.PubMedGoogle Scholar
  39. 39.
    Maudsley AA, Hilal SK, Simon HE (1984). Electronics and instrumentation for NMR imaging. IEEE Trans Nucl Sci NS-31: 990–993.Google Scholar
  40. 40.
    Turner R, Bowley RM (1986) Passive screening of switched magnetic field gradients. J Phys E 19: 876–879.CrossRefGoogle Scholar
  41. 41.
    Mansfield P, Chapman B (1986) Active magnetic screening of gradient coils in NMR imaging. J Magn Reson 66: 573–576.Google Scholar
  42. 42.
    Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human subjects. J Magn Reson 34: 425–433.Google Scholar
  43. 43.
    Bruner P, Ernst RR (1979) Sensitivity and performance time in NMR imaging. J Magn Reson 33: 83–106.Google Scholar
  44. 44.
    Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt K-D (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67: 258–266.Google Scholar
  45. 45.
    Glover GH, Pelc NJ, Shimakawa A (1987) GRASS movie techniques for gated studies. Proceedings 1987 Topical Conference on Fast Magnetic Resonance Imaging Techniques. Case Western Reserve University, Cleveland, Ohio. May 15.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • L. E. Crooks
  • N. M. Hylton

There are no affiliations available

Personalised recommendations