Fundamentals of High-Power Operation

  • Nils W. Carlson
Part of the Springer Series in Electronics and Photonics book series (SSEP, volume 33)


The fundamentals and basic concepts that are important for our understanding the physics and technological issues related to high-power, single-mode diode-laser arrays are presented. Principal concepts such as the threshold gain condition (Sect. 2.1), current-gain properties (Sect. 2.2), optimization of the above-threshold operation (Sect. 2.3), and scaling limitations are reviewed (Sect. 2.4). A comparison of the performance characteristics of the semiconductor laser medium with other well-known non-semiconductor laser media (i.e., Nd:YAG, Rhodamine-6G dye, and CO2) is also included. The effects of injected carriers on the optical properties and spatial-mode discrimination are discussed in Sect. 2.6. Heating and thermal management issues are treated in Sect. 2.8. These are topics that are common to both single-element diode lasers and diode-laser arrays.


Active Layer Cavity Length Modal Gain Multiple Quantum Well Threshold Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    W. W. Chow, W. Koch, M. Sargent III: Semiconductor-Laser Physics (Springer, Berlin, Heidelberg 1994)CrossRefGoogle Scholar
  2. 2.22.3
    M. C. Tatham, C. P. Seltzer, S. D. Perrin, D. M. Cooper: Frequency response and differential gain in strained and unstrained InGaAs/InGaAsP quantum well lasers. Electron. Lett. 27, 1278–1280 (1991)CrossRefGoogle Scholar
  3. 2.22.3
    M. C. Tatham, C. P. Seltzer, S. D. Perrin, D. M. Cooper: Frequency response and differential gain in strained and unstrained InGaAs/InGaAsP quantum well lasers. Electron. Lett. 27, 1278–1280 (1991)CrossRefGoogle Scholar
  4. 2.4
    A. Grabmaier, G. Fuchs, A. Hangleiter, R. W. Glew, P. D. Greene, J. E. A. Whiteaway: Linewidth enhancement factor and carrier-induced differential index in InGaAs separate confinement multi-quantum-well lasers. J. Appl. Phys. 70, 2467–2469 (1991)ADSCrossRefGoogle Scholar
  5. 2.5
    W. Rideout, B. Yu, J. LaCourse, P. K. York, K. J. Beerink, J. J. Coleman: Measurement of the carrier dependence of differential gain, refractive index, and linewidth enhancement factor in strained-layer quantum well lasers. Appl. Phys. Lett. 56, 706–708 (1990)ADSCrossRefGoogle Scholar
  6. 2.6
    T. Takahashi, M. Nishioka, Y. Arakawa: Differential gain of GaAs/A1GaAs quantum well and modulation-doped quantum well lasers. Appl. Phys. Lett. 58, 4–6 (1991)ADSCrossRefGoogle Scholar
  7. 2.7
    C. A. Zmudzinski, P. S. Zory, G. G. Lim, L. M. Miller, K. J. Beerink, T. L. Cockerill, J. J. Coleman, C. S. Hong, L. Figueroa: Differential gain in bulk and quantum well diode lasers. IEEE Photon. Technol. Lett. 3, 1057–1060 (1991)ADSCrossRefGoogle Scholar
  8. 2.8
    P. W. A. Mcllroy, A. Kurobe, Y. Uematsu: Analysis and application of theoretical gain curves to the design of multiquantum-well lasers., IEEE J. QE-21, 1958–1963 (1985)Google Scholar
  9. 2.9
    A. Kurobe, H. Furuyama, S. Naritsuka, N. Sugiyama, Y. Kokubun, M. Nakamura: Effects of well number, cavity length, and facet reflectivity on the reduction of threshold current of GaAs/AlGaAs multiquantum well lasers. IEEE J. QE-24, 635–640 (1988)CrossRefGoogle Scholar
  10. 2.10
    T. A. DeTemple, C. M. Herzinger: On the semiconductor laser logarithmic gain-current density relationship. IEEE J. QE-29, 1246–1252 (1993)CrossRefGoogle Scholar
  11. 2.11
    M. Mittelstein, Y. Arakawa, A. Larsson, A. Yariv: Second quantized state lasing of a current pumped single quantum well lasers. Appl. Phys. Lett. 49, 1689–1691 (1986)ADSCrossRefGoogle Scholar
  12. 2.12
    P. S. Zory, A. R. Reisinger, L. J. Mawst, G. Costrini, C. A. Zmudzinski, M. A. Emanuel, M. E. Givens, J. J. Coleman: Anomalous length dependence of threshold for thin quantum well A1GaAs lasers. Electron. Lett. 22, 475–477 (1986)ADSCrossRefGoogle Scholar
  13. 2.13
    R. Nagarajan, T. Kamiya, A. Kurobe: Bandfilling in GaAs/AIGaAs multi-quantum well lasers and its effect on the threshold current. IEEE J. QE-25, 1161–1170 (1989)CrossRefGoogle Scholar
  14. 2.14
    J. Nagle, S. Hersee, M. Krakowski, T. Weil, C. Weisbuch: Threshold current of single quantum well lasers: The role of the confining layers. Appl. Phys. Lett. 49, 1325–1327 (1986)ADSCrossRefGoogle Scholar
  15. 2.15
    J. E. A. Whiteaway, G. H. B Thompson, P. D. Greene, R. W. Clew: Logarithmic gain/current-density characteristics of InGaAs/InGaAsP/InP multiquantum-well separate-confinement-heterostructure lasers. Electron. Lett. 27, 340–342 (1991)CrossRefGoogle Scholar
  16. 2.16
    J. Katz: Power conversion efficiency of semiconductor injection lasers and laser arrays in cw operation. IEEE J. QE-21, 1854–1857 (1985)CrossRefGoogle Scholar
  17. 2.17
    D. Botez, P. Zory: Constricted double-heterostructure (AlGa)As diode lasers. Appl. Phys. Lett. 32, 261–263 (1978)ADSCrossRefGoogle Scholar
  18. 2.18
    J. R. Biard, W. N. Carr, B. S. Reed: Trans. AIME 230, 286 (1964)Google Scholar
  19. 2.19
    A. R. Reisinger, P. S. Zory, R. G. Waters: IEEE J. QE-23, 993 (1987)CrossRefGoogle Scholar
  20. 2.20
    U. Koren, B. I. Miller, Y. K. Su, T. L. Koch, J. E. Bowers: Low internal loss separate confinement heterostructure InGaAs/InGaAsP quantum well laser. Appl. Phys. Lett. 51, 1744–1746 (1987)ADSCrossRefGoogle Scholar
  21. 2.21
    R. A. Smith: Semiconductors: (Cambridge Univ. Press, Cambridge 1959)MATHGoogle Scholar
  22. 2.22
    A. E. Mozer, S. Hausser, M. H. Pilkuhn: Quantitative evaluation of gain and losses in quaternary lasers. IEEE J. QE-21, 719–724 (1985)CrossRefGoogle Scholar
  23. 2.23
    P. A. Andrekson, N. A. Olsson, T. Tanbun-ek, R. A. Logan, D. Coblentz, H. Temkin: Novel technique for determining internal loss of individual semiconductor lasers. Electron. Lett. 28, 171–172 (1992)CrossRefGoogle Scholar
  24. 2.24
    D. P. Bour, A. Rosen: Optimum cavity length for high conversion efficiency quantum well diode lasers. J. Appl. Phys. 66, 2813–2818 (1989)ADSCrossRefGoogle Scholar
  25. 2.25
    G. P. Agrawal, W. B. Joyce, R. W. Dixon, M. Lax: Beam-propagation analysis of stripe-geometry semiconductor lasers: Threshold behavior. Appl. Phys. Lett. 43, 11–13 (1983)ADSCrossRefGoogle Scholar
  26. 2.26
    P. Meissner, E. Patzak, D. Yevick: A self-consistent model of stripe geometry lasers based on the beam propagation method. IEEE J. QE-20, 899–905 (1984)CrossRefGoogle Scholar
  27. 2.27
    R. Baets, J. P. van de Capelle, P. E. Lagasse: Longitudinal analysis of semiconductor lasers with low reflectivity facets. IEEE J. QE-21, 693–669 (1985)CrossRefGoogle Scholar
  28. 2.28
    J. K. Butler, G. A. Evans: Self-consistent analysis of gain saturation in channeled-substrate-planar lasers. Appl. Phys. Lett. 51, 1792–1794 (1987)ADSCrossRefGoogle Scholar
  29. 2.29
    D. Marcuse: Computer model of an injection laser amplifier. IEEE J. QE-19, 63–73 (1983)CrossRefGoogle Scholar
  30. 2.30
    W. W. Rigrod: Homogeneously broadened cw lasers with uniform distributed loss. IEEE J. QE-14, 377–381 (1978)CrossRefGoogle Scholar
  31. 2.31
    A. E. Siegman: Lasers (University Sicence Books, Mill Valley, CA 1987)Google Scholar
  32. 2.32
    W. J. Witteman: The CO2 Laser, Springer Ser. Opt. Sci., Vol. 53 (Springer, Berlin, Heidleberg 1986)Google Scholar
  33. 2.33
    J.K. Butler, G. A. Evans, N. W. Carlson: Nonlinear characterization of modal gain and effective index saturation in channeled-substrate-planar heterojunction lasers. IEEE J. QE-25, 1646–1651 (1989)CrossRefGoogle Scholar
  34. 2.34
    L. W. Casperson: Laser power calculations: sources of error. Appl. Opt. 19, 422–433 (1980)ADSCrossRefGoogle Scholar
  35. 2.35
    G. M. Schindler: Optimum output efficiency of homogeneously broadened lasers with constant loss. IEEE J. QE-16, 546 (1980)CrossRefGoogle Scholar
  36. 2.36
    th Edition: CRC Handbook of Laser Science and Technology 1: Lasers and Masers (CRC Press, Boca Raton 1987)Google Scholar
  37. 2.37
    W. W. Duley: CO2 Lasers Effects and Applications: (Academic, New York 1976)Google Scholar
  38. 2.38
    F. J. Duarte (ed.): High-Power Dye Lasers (Springer, Berlin, Heidleberg 1991)Google Scholar
  39. 2.39
    A. Yariv: Quantum Electronics, 2nd edn. (Wiley, New York 1975)Google Scholar
  40. 2.40
    D. Mehuys, D. F. Welch, L. Goldberg, J. Weller: 4.5 W CW near-diffractionlimited tapered-stripe semiconductor optical amplifier. Electron. Lett. 29, 219–221 (1993)ADSCrossRefGoogle Scholar
  41. 2.41
    C. Zmudzinski, D. Botez, L. J. Mawst, C. Tu, L. Frantz: Coherent 1 W continuous wave operation of large-aperture resonant arrays of antiguided diode lasers. Appl. Phys. Lett. 62, 2914–2916 (1993)ADSCrossRefGoogle Scholar
  42. 2.42
    L. Goldberg, D. Mehuys, D. C. Hall: 3.3W CW diffraction-limited broad area semiconductor amplifier. Electron. Lett. 28, 1082–1084 (1992)ADSCrossRefGoogle Scholar
  43. 2.43
    G. H. B. Thompson: A theory for filamentation in semiconductor lasers including the dependence of dielectric constant on injected carrier density. Opto-electronics 4, 257–311 (1972)CrossRefGoogle Scholar
  44. 2.44
    B. R. Bennett, R. A. Soref, J. A. Del Alamo: Carrier-induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J. QE-26, 113 (1990)CrossRefGoogle Scholar
  45. 2.45
    L. D. Landau, E. M. Lifshitz: Electrodynamics of Continuoud Media: (Pergamon Press, Oxford 1975)Google Scholar
  46. 2.46
    F. Stern: Dispersion of the index of refraction near the absorption edge of semiconductors. Phys. Rev. A 133, 1653–1664 (1964)ADSGoogle Scholar
  47. 2.47
    S. Tarucha, H. Kobayashi, Y. Horikoshi, H. Okamoto: Carrier-induced energy-gap shrinkage in current-injection GaAs/A1GaAs MQW heterostuctures. Jpn. J. Appl. Phys. 23, 874–878 (1984)ADSCrossRefGoogle Scholar
  48. 2.48
    E. Zielinski, H. Schweizer, S. Hausser, R. Stuber, M. K. Pilkuhn, G. Weimann: Systematics of laser operation in GaAs/A1GaAs multiquantum well lasers. IEEE J. QE-23, 969–975 (1987)CrossRefGoogle Scholar
  49. 2.49
    P. Blood: Stimulated emission in quantum well laser diodes. Appl. Phys. Lett. 55, 1–3 (1989)ADSCrossRefGoogle Scholar
  50. 2.50
    S. H. Park, J. I. Shim, K. Kudo, M. Asada, S. Arai: Band gap shrinkage in GaInAs/GaInAsP/InP multi-quantum well lasers. J. Appl. Phys. 72, 279281 (1992)Google Scholar
  51. 2.51
    M. Asada: Intraband relaxation effect on optical spectra, in Quantum Well Lasers, ed. By P. Zory (Academic, Orlando 1993)Google Scholar
  52. 2.52
    J. M. Ziman: Principles of the Theory of Solids. (Cambridge Univ. Press, Cambridge 1972)Google Scholar
  53. 2.53
    C. H. Henry, R. A. Logan, F. R. Merritt, J. P. Luongo: The effect of inter-valence band absorption on the thermal behavior of InGaAsP lasers. IEEE J. QE-19, 947–952 (1983)CrossRefGoogle Scholar
  54. 2.54
    M. Takeshima: Intervalence-band absorption in relation to Auger recombination in laser materials. Jpn. J. Appl. Phys. 23, 428–435 (1984)ADSCrossRefGoogle Scholar
  55. 2.55
    M. Asada, A. Kameyama, Y. Suematsu: Gain and intervalence band absorption in quantum-well lasers. IEEE J. QE-20, 745–753 (1984)CrossRefGoogle Scholar
  56. 2.56
    C. H. Henry, R. A. Logan, K. A. Bertness: Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers. J. Appl. Phys. 52, 4457–4461 (1981)ADSCrossRefGoogle Scholar
  57. 2.57
    B. W. Hakki, T. L. Paoli: Gain spectra in GaAs double-heterostructure injection lasers. J. Appl. Phys. 46, 1299–1306, (1975)ADSCrossRefGoogle Scholar
  58. 2.58
    S. E. H. Turley, G. H. B. Thompson, D. F. Lovelace: Effect of injection current on dielectric constant of an inbuilt waveguide in twin-transversejunction stripe lasers. Electron. Lett. 15, 256–257 (1979)ADSCrossRefGoogle Scholar
  59. 2.59
    I. D. Henning, J. V. Collins. Measurements of the semiconductor laser linewidth broadening factor. Electron. Lett. 19, 927–929 (1983)CrossRefGoogle Scholar
  60. 2.60
    J. Manning, R. Olshansky, C. B. Su: The carrier-induced index change in AlGaAs and 1.3µm InGaAsP diode lasers. IEEE J. QE-19, 1525–1520 (1983)CrossRefGoogle Scholar
  61. 2.61
    N. K. Dutta, N. A. Olsson, W. T. Tsang: Carrier induced refractive index change in A1GaAs quantum well lasers. Appl. Phys. Lett. 45, 836–837 (1984)ADSCrossRefGoogle Scholar
  62. 2.62
    N. Ogasawara, R. Ito, R. Morita: Linewidth enhancement factor in GaAs/AlGaAs multi-quantum-well lasers. Jpn. J. Appl. Phys. 24, L519–L521 (1985)ADSCrossRefGoogle Scholar
  63. 2.63
    S. Hausser, W. Idler, E. Zielinski, M. K. Pilkuhn, G. Weimann, W. Schlapp: Spontaneous emission factor and waveguiding in GaAs/AlGaAs MQW lasers. IEEE J. QE-25, 1469–1476 (1989)CrossRefGoogle Scholar
  64. 2.64
    P. Brosson, J. Jacquet, A. Perales, B. Mersali, D. Leclerc: Carrier induced differential refractive index detuning effect in GaInAsP SCMQW lasers with 3, 5, and 9 wells. 12th IEEE Int’l Semiconductor Laser Conf. Digest, pp. 88–89 (1990)CrossRefGoogle Scholar
  65. 2.65
    M. Osinski, J. Buus: Linewidth broadening factor in semiconductor lasers - an overview. IEEE J. QE-19, 9–29 (1987)CrossRefGoogle Scholar
  66. 2.66
    S. Banerjee, A. K. Srivastava, N. Chand: Reduction of the linewidth enhancement factor for Ino.2Gao.sAs/GaAs/Alo.5Ga0.5As strained quantum well lasers. Appl. Phys. Lett. 58, 2198–2199 (1991)ADSCrossRefGoogle Scholar
  67. 2.67
    N. Storkfelt, M. Yamaguchi, B. Mikkelsen, K. E. Stubkjaer: Recombination constants and a factor in 1.5µm MQW optical amplifiers taking carrier overflow into account. Electron. Lett. 28, 1774–1776 (1992)CrossRefGoogle Scholar
  68. 2.68
    M. Asada, A. R Adams, K. E. Stubkjaer, Y. Suematsu, Y. Itaya, S. Arai: The temperature dependence of the threshold current of GaInAsP/InP DH lasers. IEEE J. QE-17, 611–618 (1981)CrossRefGoogle Scholar
  69. 2.69
    Y. C. Chen, A. R. Reisinger, S. R. Chinn: Thermal waveguiding in oxide-defined, narrow-stripe, large-optical-cavity lasers. Appl. Phys. Lett. 15, 129–131 (1982)ADSCrossRefGoogle Scholar
  70. 2.70
    P. Blood, S. Colak, A. I. Kucharska: Temperature dependence of threshold current in GaAs/A1GaAs quantum well lasers. Appl. Phys. Lett. 52, 599–601 (1988)ADSCrossRefGoogle Scholar
  71. 2.71
    N. K. Dutta: Calculated temperature dependence of threshold current of GaAsA1,<Ga1_xAs double heterostructure lasers. J. Appl. Phys. 52, 70–73 (1981)ADSCrossRefGoogle Scholar
  72. 2.72
    P.S. Zory, A.R. Reisinger, R. G. Waters, L.J. Mawst, C.A. Zmudzinski, M.A. Emanuel, M.E. Givens, J.J. Coleman: Anomalous temperature dependence of threshold for thin quantum well AlGaAs diode lasers. Appl. Phys. Lett. 49, 16–18 (1986)ADSCrossRefGoogle Scholar
  73. 2.73
    M. M. Leopold, A. P. Specht, C.A. Zmudzinski, M.E. Givens, J.J. Coleman: Temperature-dependent factors contributing to To in graded-index separateconfinement-heterostructure single quantum well lasers. Appl. Phys. Lett. 50, 1403–1405 (1987)ADSCrossRefGoogle Scholar
  74. 2.74
    W. B. Joyce, R. W. Dixon: Thermal resistance of heterostructure lasers. J. Appl. Phys. 46, 855–862 (1975)ADSCrossRefGoogle Scholar
  75. 2.75
    T. Kobayashi, Y. Furukawa: Temperature distributions in the GaAs—GaAlAs double-heterostructure laser below and above the threshold current. Jpn. J. Appl. Phys. 14, 1981 (1975)ADSCrossRefGoogle Scholar
  76. 2.76
    H. Yonezu, T. Yuasa, T. Shinohara, T. Kamejima, I. Sakuma: CW optical power from (AlGa) As double heterostructure lasers. Jpn. J. Appl. Phys. 15, 2393 (1976)ADSCrossRefGoogle Scholar
  77. 2.77
    A. G. Stevenson, P. J. Fiddyment, D. H. Newman: Low threshold current proton-isolated (GaAlAs) double heterostructure lasers. Opt. Quantum Electron. 9, 519–525 (1977)ADSCrossRefGoogle Scholar
  78. 2.78
    D. H. Newman, D. J. Bond, J. Stefani: Thermal-resistance models for proton-isolated double heterostructure lasers. Solid State Electron Devices 2, 41–46 (1978)ADSCrossRefGoogle Scholar
  79. 2.79
    E. Duda, J. C. Carballes, J. Apruzzese: Thermal resistance and temperature distribution in double heterostructure lasers: Calculation and experimental results. IEEE J. QE-15, 812–817 (1979)CrossRefGoogle Scholar
  80. 2.80
    M. Ito, T. Kimura: Stationary and transient thermal properties of semiconductor laser diodes. IEEE J. QE-17, 787–795 (1981)CrossRefGoogle Scholar
  81. 2.81
    J. S. Manning: J. Appl. Phys. 52, 3179 (1981)ADSCrossRefGoogle Scholar
  82. 2.82
    W. B. Joyce: Current-crowded carrier confinement in double heterostructure lasers. J. Appl. Phys. 51, 2394–2401 (1980)ADSCrossRefGoogle Scholar
  83. 2.83
    W. B. Joyce: Carrier transport in double-heterostructure active layers. J. Appl. Phys. 53, 7235–7239 (1982)ADSCrossRefGoogle Scholar
  84. 2.84
    G. Lengyel, P. Meissner, E. Patzak, K. H. Zschauer: IEEE J. QE-18, 618 (1982)CrossRefGoogle Scholar
  85. 2.85
    R. Papannareddy, W. Ferguson, J. K. Butler: Current spreading and carrier diffusion in zinc-diffused multiple-stripe-geometry lasers. Appl. Phys. Lett. 50, 1316–1318 (1987)ADSCrossRefGoogle Scholar
  86. 2.86
    R. Papannareddy, W. Ferguson, J. K. Butler: A generalized thermal model for stripe-geometry injection lasers. J. Appl. Phys. 62, 3565–3569 (1987)ADSCrossRefGoogle Scholar
  87. 2.87
    W. Nakwaski: Thermal properties of buried-heterostructure laser diodes. IEE Proc. Pt. J 134, 87–94 (1987)Google Scholar
  88. 2.88
    E. M. Garmire, M. T. Travis: Heatsink requirements for coherent operation of high-power laser arrays. IEEE J. QE-20, 1277–1281 (1984)CrossRefGoogle Scholar
  89. 2.89
    Z. L. Liau, J. N. Walpole, D. Z. Tsang, V. Diadiuk: Characterization of mass-transported p-substrate GaInAsP/InP buried-heterostructure lasers with analytical solutions for electrical and thermal resistances. IEEE J. QE-24, 3642 (1988)Google Scholar
  90. 2.90
    J. G. Endriz, M. Vakili, G. S. Browder, M. DeVito, J. M. Haden, G. L. Harnagel, W. E. Plano, M. Sakamoto, D. F. Welch, S. Willing, D. P. Worland, H. C. Yao: High power diode laser arrays. IEEE J. QE-28, 952–965 (1992)CrossRefGoogle Scholar
  91. 2.91
    G. L. Harnagel, M. Vakili, K. R. Anderson, D. P. Worland, J. G. Endriz, D. R. Scifres: High-duty cycle, high-power two-dimensional laser diode arrays. Electron. Lett. 29, 1008–1010 (1993)ADSCrossRefGoogle Scholar
  92. 2.92
    V. Krause, F. Robert, B. Oilier, J. Buschke, T. Kimpel, H. -G. Treusch, P. Lossen, E. Beyer: Copper coolers for high-power laser diode in copper technology. Proc. SPIE 2148, (1994)Google Scholar
  93. 2.93
    R. J. Phillips: Microchannel heat sinks. Lincoln Laboratory J. 1, 31 (1988)ADSGoogle Scholar
  94. 2.94
    D. Mundinger, R. Beach, W. Benett, R. Solarz, W. Krupke, R. Stayer, D. Tuckerman: Demonstration of high performance silicon microchannel heat exchangers for laser diode array cooling. Appl. Phys. Lett. 53, 1030 (1988)ADSCrossRefGoogle Scholar
  95. 2.95
    L. J Missaggia, J. N. Walpole, Z. L. Liau, R. J. Phillips: Microchannel heat sinks for two-dimensional high-power-density diode laser arrays. IEEE J. QE-25, 1988 (1989)CrossRefGoogle Scholar
  96. 2.96
    R. Beach, D. Mundinger, W. Benett, V. Sperry, B. Comaskey, R. Solarz: High-reliability silicon microchannel submount for high average power laser diode arrays. Appl. Phys. Lett. 56, 2065 (1990)ADSCrossRefGoogle Scholar
  97. 2.97
    D. Mundinger, R. Beach, W. Benett, R. Solarz, V. Sperry, D. Ciarlo: High average power edge emitting laser diode arrays on silicon microchannel coolers. Appl. Phys. Lett. bf 57, 2172 (1990)ADSCrossRefGoogle Scholar
  98. 2.98
    L. J Missaggia, J. N. Walpole: A microchannel heat sink with alternating directions of water flow in adjacent channels. Proc. SPIE 1582, p. 106 (1991)ADSCrossRefGoogle Scholar
  99. 2.99
    J. P. Donnelly, W. D. Goodhue, C. A. Wang, R. J. Bailey, G. A. Lincoln, G. D. Johnson, L. J. Missaggia, J. N. Walpole: CW operation of monolithic arrays of surface-emitting folded-cavity InGaAs/AlGaAs diode lasers. IEEE Photon. Technol. Lett. 5, 747–750 (1993)ADSCrossRefGoogle Scholar
  100. 2.100
    R. Beach, M. A. Emanuel, W. J. Benett, B. L. Freitas, N. W. Carslon, J. Skidmore, R. W. Solarz: Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers. Proc. SPIE 2148, (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Nils W. Carlson
    • 1
  1. 1.Lawrence Livermore National LaboratoriesLivermoreUSA

Personalised recommendations