The Mitochondrial Pyruvate Carrier: The Mechanism of Substrate Binding

  • Katarzyna A. Nałęcz
Part of the NATO ASI Series book series (volume 83)


Pyruvate, a compound connecting the metabolic pathways in catabolism and anabolism of sugars, fatty acids and amino acids, in most cases must enter mitochondria where its further metabolism takes place. Pyruvate transport, catalysed by a specific carrier (Papa et al., 1971), occurs either due to a ΔpH dependent process (Papa & Paradies, 1974) or in an exchange with other 2-oxo- or halogenated monocarboxylates (Paradies & Papa, 1977), which can have great significance in the removal of ketone bodies in vivo.


Pyridoxal Phosphate Reconstituted System Phenylarsine Oxide Anion Carrier Bovine Heart Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





4, 4’-diisothiocyano-2, 2’-stilbene disulfonate








p-hydroxymercuribenzoate (p-chloromercuribenzoic acid)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azzi A, Nałęcz KA, Nałęcz MJ, Wojtczak L (eds) (1989) Anion carriers of mitochondrial membranes. Springer Berlin Heidelberg New YorkGoogle Scholar
  2. Bakker EP, Van Dam K (1974) The movement of monocarboxylic acids across phospholipid membrane: Evidence for an exchange diffusion between pyruvate and other monocarboxylate ions. Biochim Biophys Acta 339: 285–289CrossRefGoogle Scholar
  3. Bolli R, Nałęcz KA, Azzi A (1989) Monocarboxylate and alpha-ketoglutarate carriers from bovine heart mitochondria. Purification by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. J Biol Chem 264: 18024–18030PubMedGoogle Scholar
  4. Cotton FA, Day VW, Hazen EE, Larsen S (1973) Structure of methylguanidinium di-hydrogenorthophosphate. A model compound for arginine-phosphate hydrogen bonding. J Am Chem Soc 95: 4834–4840PubMedCrossRefGoogle Scholar
  5. Capuano F, Di Paola M, Azzi A, Papa S (1990) The monocarboxylate carrier from rat liver mitochondria. Purification and kinetic characterization in a reconstituted system. FEBS Lett 261: 39–42PubMedCrossRefGoogle Scholar
  6. Dierks T, Riemer E, Krämer R (1988) Reaction mechanism of the reconstituted aspartate/ glutamate carrier from bovine heart mitochondria. Biochim Biophys Acta 943: 231–244PubMedCrossRefGoogle Scholar
  7. Dierks T, Salentin A, Heberger C, Krämer R (1990a) The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagent. Biochim Biophys Acta 1028: 268–280PubMedCrossRefGoogle Scholar
  8. Dierks T, Salentin A, Krämer R (1990b) Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a preformed channel as a structural requirement of carrier-mediated transport. Biochim Biophys Acta 1028: 281–288PubMedCrossRefGoogle Scholar
  9. Halestrap AP (1975) The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J 148: 85–96PubMedGoogle Scholar
  10. Halestrap AP (1978) Pyruvate and ketone-body transport across the mitochondrial membrane. Biochem J 172: 377–787PubMedGoogle Scholar
  11. Indiveri C, Dierks T, Krämer R, Palmieri F (1989) Kinetic discrimination of two substrate binding sites of the reconstituted dicarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta 977: 194–199PubMedCrossRefGoogle Scholar
  12. Indiveri C, Dierks T, Krämer R, Palmieri F (1991) Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. Eur J Biochem 198: 339–347PubMedCrossRefGoogle Scholar
  13. Kassab R, Roustan C, Pradel L-A (1968) Site actif des ATP: guanidine phosphotransférases. I. Réaction des groupes ∈-NH2 lysine essentiels avec le 1-diméthylamino-naphtalene-5-sulfochlorure. Biochim Biophys Acta 167: 308–316PubMedGoogle Scholar
  14. Klingenberg M (1981) Membrane protein oligomeric structure and transport function. Nature 290: 449–454PubMedCrossRefGoogle Scholar
  15. Krämer R, Heberger C (1986) Functional reconstitution of carrier proteins by removal of detergent with a hydrophobic ion exchange column. Biochim Biophys Acta 863: 289–296PubMedCrossRefGoogle Scholar
  16. Krämer R, Palmieri F (1989) Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. Biochim Biophys Acta 974: 1–23PubMedCrossRefGoogle Scholar
  17. Miles EW (1977) Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol 47: 431–442PubMedCrossRefGoogle Scholar
  18. Nałęcz KA, Bolli R, Wojtczak L, Azzi A (1986a) The monocarboxylate carrier from bovine heart mitochondria: partial purification and its substrate-transporting properties in a reconstituted system. Biochim Biophys Acta 851: 29–37PubMedCrossRefGoogle Scholar
  19. Nałęcz KA, Bolli R, Wojtczak L, Azzi A (1989) Purification of the monocarboxylate carrier by affinity chromatography. In Anion carriers of mitochondrial membranes, Azzi A, Nałęcz KA, Nałęcz, Wojtczak L (eds) pp 45–57. Springer, Berlin Heidelberg New YorkGoogle Scholar
  20. Nałęcz KA, Kamińska J, Nałęcz MJ, Azzi A (1992) The activity of pyruvate carrier in a reconstituted system: Substrate specificity and inhibitor sensitivity. Arch Biochem Biophys 297: 162–168PubMedCrossRefGoogle Scholar
  21. Nałęcz KA, Müller M, Zambrowicz EB, Wojtczak L, Azzi A (1990) Significance and redox state of SH groups in pyruvate carrier isolated from bovine heart mitochondria. Biochim Biophys Acta 1016: 272–279PubMedCrossRefGoogle Scholar
  22. Nałęcz KA, Zambrowicz BE (1990) Monocarboxylate carrier from bovine heart mitochondria: Reconstitution in a functionally active state. Acta Biochim Polonica 37: 109–112Google Scholar
  23. Nałęcz MJ, Nałęcz KA, Azzi A (1991) Purification and functional characterisation of the pyruvate (monocarboxylate) carrier from baker’s yeast mitochondria (Saccharomyces cerevisiae). Biochim Biophys Acta 1079: 87–95PubMedCrossRefGoogle Scholar
  24. Nałęcz MJ, Nałęcz KA, Broger C, Bolli R, Wojtczak L, Azzi A (1986b) Extraction, partial purification and functional reconstitution of two mitochondrial carriers transporting keto acids: 2-oxoglutarate and pyruvate. FEBS Lett 196: 331–336PubMedCrossRefGoogle Scholar
  25. Palmieri F, Bisaccia F, Capobianco L, Iacobazzi V, Indiveri C, Zara V (1990) Structural and functional properties of mitochondrial anion carriers. Biochim Biophys Acta 1018: 147–150PubMedCrossRefGoogle Scholar
  26. Papa S, Francavilla A, Paradies G, Meduri B (1971) The transport of pyruvate in rat liver mitochondria. FEBS Lett 12: 285–288PubMedCrossRefGoogle Scholar
  27. Papa S, Paradies G (1974) On the mechanism of translocation of pyruvate and other monocarboxylic acids in rat-liver mitochondria. Eur J Biochem 49: 265–275PubMedCrossRefGoogle Scholar
  28. Paradies G (1984) Interaction of alpha-cyano [14C]cinnamate with the mitochondrial pyruvate translocator. Biochim Biophys Acta 766: 446–450PubMedCrossRefGoogle Scholar
  29. Paradies G, Papa S (1977) On the kinetics and substrate specificity of the pyruvate translocation in rat liver mitochondria. Biochim Biophys Acta 462: 333–346PubMedCrossRefGoogle Scholar
  30. Paradies G, Ruggiero FM (1986) Characterization of the alpha-cyanocinnamate binding site in rat heart mitochondria and in submitochondrial particles. Biochim Biophys Acta 850: 249–255PubMedCrossRefGoogle Scholar
  31. Stappen R, Krämer R (1992) Kinetic characterization of the reconstituted phosphate carrier from bovine heart mitochondria. EBEC Short Reports Vol 7, p 86Google Scholar
  32. Takahashi K (1968) The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem 23: 6171–6179Google Scholar
  33. Tavale SS, Pant LM, Biswas AB (1961) The crystal structure of sodium pyruvate. Acta Cryst 14: 1281–1286CrossRefGoogle Scholar
  34. Wlodek L, Czubak J (1984) Formation of 2-methyl-2, 4-thiazolidinedicarboxylic acid from L-cysteine in rat tissues. Acta Biochim Polonica 31: 279–288Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Katarzyna A. Nałęcz
    • 1
  1. 1.Nencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations