Skip to main content

The Mitochondrial Pyruvate Carrier: The Mechanism of Substrate Binding

  • Conference paper
Molecular Biology of Mitochondrial Transport Systems

Part of the book series: NATO ASI Series ((ASIH,volume 83))

Abstract

Pyruvate, a compound connecting the metabolic pathways in catabolism and anabolism of sugars, fatty acids and amino acids, in most cases must enter mitochondria where its further metabolism takes place. Pyruvate transport, catalysed by a specific carrier (Papa et al., 1971), occurs either due to a ΔpH dependent process (Papa & Paradies, 1974) or in an exchange with other 2-oxo- or halogenated monocarboxylates (Paradies & Papa, 1977), which can have great significance in the removal of ketone bodies in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DEPC:

diethylpyrocarbonate

DIDS:

4, 4’-diisothiocyano-2, 2’-stilbene disulfonate

DTE:

dithioerythritol

HTP:

hydroxylapatite

NEM:

N-ethylmaleimide

pCMB:

p-hydroxymercuribenzoate (p-chloromercuribenzoic acid)

References

  • Azzi A, Nałęcz KA, Nałęcz MJ, Wojtczak L (eds) (1989) Anion carriers of mitochondrial membranes. Springer Berlin Heidelberg New York

    Google Scholar 

  • Bakker EP, Van Dam K (1974) The movement of monocarboxylic acids across phospholipid membrane: Evidence for an exchange diffusion between pyruvate and other monocarboxylate ions. Biochim Biophys Acta 339: 285–289

    Article  CAS  Google Scholar 

  • Bolli R, Nałęcz KA, Azzi A (1989) Monocarboxylate and alpha-ketoglutarate carriers from bovine heart mitochondria. Purification by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. J Biol Chem 264: 18024–18030

    PubMed  CAS  Google Scholar 

  • Cotton FA, Day VW, Hazen EE, Larsen S (1973) Structure of methylguanidinium di-hydrogenorthophosphate. A model compound for arginine-phosphate hydrogen bonding. J Am Chem Soc 95: 4834–4840

    Article  PubMed  CAS  Google Scholar 

  • Capuano F, Di Paola M, Azzi A, Papa S (1990) The monocarboxylate carrier from rat liver mitochondria. Purification and kinetic characterization in a reconstituted system. FEBS Lett 261: 39–42

    Article  PubMed  CAS  Google Scholar 

  • Dierks T, Riemer E, Krämer R (1988) Reaction mechanism of the reconstituted aspartate/ glutamate carrier from bovine heart mitochondria. Biochim Biophys Acta 943: 231–244

    Article  PubMed  CAS  Google Scholar 

  • Dierks T, Salentin A, Heberger C, Krämer R (1990a) The mitochondrial aspartate/glutamate and ADP/ATP carrier switch from obligate counterexchange to unidirectional transport after modification by SH-reagent. Biochim Biophys Acta 1028: 268–280

    Article  PubMed  CAS  Google Scholar 

  • Dierks T, Salentin A, Krämer R (1990b) Pore-like and carrier-like properties of the mitochondrial aspartate/glutamate carrier after modification by SH-reagents: evidence for a preformed channel as a structural requirement of carrier-mediated transport. Biochim Biophys Acta 1028: 281–288

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP (1975) The mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem J 148: 85–96

    PubMed  CAS  Google Scholar 

  • Halestrap AP (1978) Pyruvate and ketone-body transport across the mitochondrial membrane. Biochem J 172: 377–787

    PubMed  CAS  Google Scholar 

  • Indiveri C, Dierks T, Krämer R, Palmieri F (1989) Kinetic discrimination of two substrate binding sites of the reconstituted dicarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta 977: 194–199

    Article  PubMed  CAS  Google Scholar 

  • Indiveri C, Dierks T, Krämer R, Palmieri F (1991) Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. Eur J Biochem 198: 339–347

    Article  PubMed  CAS  Google Scholar 

  • Kassab R, Roustan C, Pradel L-A (1968) Site actif des ATP: guanidine phosphotransférases. I. Réaction des groupes ∈-NH2 lysine essentiels avec le 1-diméthylamino-naphtalene-5-sulfochlorure. Biochim Biophys Acta 167: 308–316

    PubMed  CAS  Google Scholar 

  • Klingenberg M (1981) Membrane protein oligomeric structure and transport function. Nature 290: 449–454

    Article  PubMed  CAS  Google Scholar 

  • Krämer R, Heberger C (1986) Functional reconstitution of carrier proteins by removal of detergent with a hydrophobic ion exchange column. Biochim Biophys Acta 863: 289–296

    Article  PubMed  Google Scholar 

  • Krämer R, Palmieri F (1989) Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. Biochim Biophys Acta 974: 1–23

    Article  PubMed  Google Scholar 

  • Miles EW (1977) Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol 47: 431–442

    Article  PubMed  CAS  Google Scholar 

  • Nałęcz KA, Bolli R, Wojtczak L, Azzi A (1986a) The monocarboxylate carrier from bovine heart mitochondria: partial purification and its substrate-transporting properties in a reconstituted system. Biochim Biophys Acta 851: 29–37

    Article  PubMed  Google Scholar 

  • Nałęcz KA, Bolli R, Wojtczak L, Azzi A (1989) Purification of the monocarboxylate carrier by affinity chromatography. In Anion carriers of mitochondrial membranes, Azzi A, Nałęcz KA, Nałęcz, Wojtczak L (eds) pp 45–57. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nałęcz KA, Kamińska J, Nałęcz MJ, Azzi A (1992) The activity of pyruvate carrier in a reconstituted system: Substrate specificity and inhibitor sensitivity. Arch Biochem Biophys 297: 162–168

    Article  PubMed  Google Scholar 

  • Nałęcz KA, Müller M, Zambrowicz EB, Wojtczak L, Azzi A (1990) Significance and redox state of SH groups in pyruvate carrier isolated from bovine heart mitochondria. Biochim Biophys Acta 1016: 272–279

    Article  PubMed  Google Scholar 

  • Nałęcz KA, Zambrowicz BE (1990) Monocarboxylate carrier from bovine heart mitochondria: Reconstitution in a functionally active state. Acta Biochim Polonica 37: 109–112

    Google Scholar 

  • Nałęcz MJ, Nałęcz KA, Azzi A (1991) Purification and functional characterisation of the pyruvate (monocarboxylate) carrier from baker’s yeast mitochondria (Saccharomyces cerevisiae). Biochim Biophys Acta 1079: 87–95

    Article  PubMed  Google Scholar 

  • Nałęcz MJ, Nałęcz KA, Broger C, Bolli R, Wojtczak L, Azzi A (1986b) Extraction, partial purification and functional reconstitution of two mitochondrial carriers transporting keto acids: 2-oxoglutarate and pyruvate. FEBS Lett 196: 331–336

    Article  PubMed  Google Scholar 

  • Palmieri F, Bisaccia F, Capobianco L, Iacobazzi V, Indiveri C, Zara V (1990) Structural and functional properties of mitochondrial anion carriers. Biochim Biophys Acta 1018: 147–150

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Francavilla A, Paradies G, Meduri B (1971) The transport of pyruvate in rat liver mitochondria. FEBS Lett 12: 285–288

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Paradies G (1974) On the mechanism of translocation of pyruvate and other monocarboxylic acids in rat-liver mitochondria. Eur J Biochem 49: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Paradies G (1984) Interaction of alpha-cyano [14C]cinnamate with the mitochondrial pyruvate translocator. Biochim Biophys Acta 766: 446–450

    Article  PubMed  CAS  Google Scholar 

  • Paradies G, Papa S (1977) On the kinetics and substrate specificity of the pyruvate translocation in rat liver mitochondria. Biochim Biophys Acta 462: 333–346

    Article  PubMed  CAS  Google Scholar 

  • Paradies G, Ruggiero FM (1986) Characterization of the alpha-cyanocinnamate binding site in rat heart mitochondria and in submitochondrial particles. Biochim Biophys Acta 850: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Stappen R, Krämer R (1992) Kinetic characterization of the reconstituted phosphate carrier from bovine heart mitochondria. EBEC Short Reports Vol 7, p 86

    Google Scholar 

  • Takahashi K (1968) The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem 23: 6171–6179

    Google Scholar 

  • Tavale SS, Pant LM, Biswas AB (1961) The crystal structure of sodium pyruvate. Acta Cryst 14: 1281–1286

    Article  CAS  Google Scholar 

  • Wlodek L, Czubak J (1984) Formation of 2-methyl-2, 4-thiazolidinedicarboxylic acid from L-cysteine in rat tissues. Acta Biochim Polonica 31: 279–288

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nałęcz, K.A. (1994). The Mitochondrial Pyruvate Carrier: The Mechanism of Substrate Binding. In: Forte, M., Colombini, M. (eds) Molecular Biology of Mitochondrial Transport Systems. NATO ASI Series, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78936-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78936-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78938-0

  • Online ISBN: 978-3-642-78936-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics