The Human Immunodeficiency Virus Type 1 vif Gene: The Road from an Accessory to an Essential Role in Human Immunodeficiency Virus Type 1 Replication

  • D. J. Volsky
  • M. J. Potash
  • M. Simm
  • P. Sova
  • X. Y. Ma
  • W. Chao
  • M. Shahabuddin
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 193)


The vif (virion infectivity factor) gene is one of nine genes known to be expressed by human immunodeficiency virus (HIV)-1 (Wong-Staal and Gallo 1985; Haseltine 1988); vif and four other genes encode protein which are not structural components of virions but regulate viral replication to varying degrees (Haseltine 1988; Levy 1993). The two best-known viral regulatory genes, tat and rev, are essential for HIV-1 replication (Rosen et al. 1986; Sodroski et al. 1986b); in contrast, vif has been defined as an accessory gene because in initial studies its function was found to be dispensable for virus infection of transformed T cell lines (Sodroski et al. 1986a; Fisher et al. 1987; Strebel et al. 1987). After the initial description of vif and the effects of its ablation on virus replication (Sodroski et al. 1986a; Fisher et al. 1987; Strebel et al. 1987), very little research was done to further the understanding of the function of this viral gene product. Recently, however, a number of laboratories made the unexpected observation that vif is required for HIV-1 infection in its primary target cells, CD4-bearing T lymphocytes (Akari et al. 1992; Fan and Peden 1992; Gabuzda et al. 1992; Michaels et al. 1993; von Schwedler et al. 1993). This all-or-none dependence on the expression of vif for HIV-1 infection of peripheral blood lymphocytes (PBL) is illustrated in Fig. 1. These findings mandate the redefinition of vif as an essential gene for HIV-1 replication. We shall review the studies on the role of vif in HIV-1 infection and shall attempt to incorporate the results from different systems in the construction of a testable model for the mechanism of action of Vif. Because the cell-type dependence of Vif activity has become apparent only recently, early studies must be interpreted with these new variables in mind.


Human Immunodeficiency Virus Peripheral Blood Lymphocyte Equine Infectious Anemia Virus Virion Infectivity Factor Intracellular Viral Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi A, Ono N, Sakai H, Ogawa K, Shibata R, Kiyomasu T, Masuike H, Ueda S (1991) Generation and characterization of the human immunodeficiency virus type 1 mutants. Arch Virol 117: 45–58PubMedCrossRefGoogle Scholar
  2. Akari H, Sakuragi J, Takebe Y, Tomonaga K, Kawamura M, Fukasawa M, Miura T, Shinjo T, Hayami M (1992) Biological characterization of human immunodeficiency virus type 1 and type 2 mutants in human peripheral blood mononuclear cells. Arch Virol 123: 157–167PubMedCrossRefGoogle Scholar
  3. Blanc D, Patience C, Schultz TF, Weiss R, Spire B (1993) Transcomplementation of Vif” HIV-1 mutants in CEM cells suggests that Vif affects late steps of the viral life cycle. Virology 193: 186–192PubMedCrossRefGoogle Scholar
  4. Cohen EA, Dehni G, Sodroski JG, Haseltine WA (1990) Human immunodeficiency virus ypr product is a virion-associated regulatory protein. J Virol 64: 3097–3099PubMedGoogle Scholar
  5. Cullen BR, Greene WC (1989) Regulatory pathways governing HIV-1 replication. Cell 58: 423–426PubMedCrossRefGoogle Scholar
  6. Fan L, Peden K (1992) Cell-free transmission of Vif mutants of HIV-1. Virology 190: 19–29PubMedCrossRefGoogle Scholar
  7. Fisher AG, Ensoli B, Ivanoff L, Chamberlain M, Petteway S, Ratner L, Gallo RC, Wong-Staal F (1987) The sor gene of HIV-1 is required for efficient virus transmission in vitro. Science 237: 888–895PubMedCrossRefGoogle Scholar
  8. Gabuzda DH, Lawrence K, Langhoff E, Terwilliger E, Dorf manT, Haseltine WA, Sodroski J (1992) Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J Virol 66: 6489–6495PubMedGoogle Scholar
  9. Gallo RC, Wong-Staal F, Montaginer L, Haseltine WA, Yoshida M (1988) HIV/HTLV gene nomenclature. Nature 333: 504PubMedCrossRefGoogle Scholar
  10. Garrett ED, Tiley LS, Cullen BR (1991) Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol 65: 1653–1657PubMedGoogle Scholar
  11. Golub EI, Li G, Volsky DJ (1990) Differences in the basal activity of the long terminal repeat determine different replicative capacities of two closely related human immunodeficiency virus type 1 isolates. J Virol 64: 3654–3660PubMedGoogle Scholar
  12. Goncalves J, Jallepalli P, Gabuzda DH (1994) Subcellular localization of the Vif protein human immunodeficiency virus type 1. J Virol 68: 704–712PubMedGoogle Scholar
  13. Guy B, Geist M, Dott K, Spehner D, Kieny MP, Lecocq JP (1991) A specific inhibitor of cysteine proteases impairs a Vif-dependent modification of human immunodeficiency virus type 1 env protein. J Virol 65: 1325–1331PubMedGoogle Scholar
  14. Haseltine WA (1988) Replication and pathogenesis of the AIDS virus. J Acquir Immune Defic Syndr 1: 217–240PubMedGoogle Scholar
  15. Hoglund S, Ohaen A, Lawrence K, Gabuzda D (1994) Role of vif during packing of the core of HIV-1. Virology 201: 349–355PubMedCrossRefGoogle Scholar
  16. Kan NC, Franchini G, Wong-Staal F, DuBois GC, Robey G, Lautenberger JA, Papas TS (1986) Identification of HTLV-II/LAV sor gene product and detection of antibodies in human sera. Science 231: 1553–1555PubMedCrossRefGoogle Scholar
  17. Kishi M, Nishino Y, Sumiya M, Ohki K, Kimura T, Goto T, Nakai M, Kakinuma M, Ikuta K (1992) Cells surviving infection by human immunodeficiency virus type 1: vif or vpu mutants produce non-infectious r markedly less cytopathic viruses. J Gen Virol 73: 77–87PubMedCrossRefGoogle Scholar
  18. Lee T-H, Coligan JE, Allan JS, McLane MF, Groopman JE, Essex M (1986) A new HTLV-III/LAV protein encoded by a gene found cytopathic retroviruses. Science 231: 1546–1549PubMedCrossRefGoogle Scholar
  19. Levy JA (1993) Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 57: 183–289PubMedGoogle Scholar
  20. Ma X-Y, Sakai K, Sinangil F, Golub E, Volsky DJ (1990) Interaction of a noncytopathic human immunodeficiency virus type 1 (HIV-1) with target cells: efficient virus entry followed by delayed expression of its RNA and protein. Virology 176: 184–194PubMedCrossRefGoogle Scholar
  21. Ma X-Y, Sova P, Chao W, Volsky DJ (1994) Cysteine residues in the vif protein of human immunodeficiency virus type 1 are essential for viral infectivity. J Virol 68: 1714–1720PubMedGoogle Scholar
  22. Michaels FH, Hattori N, Gallo RC, Franchini G (1993) The human immunodeficiency virus type 1 Vif protein is located in the cytoplasm of infected cells and its effect on viral replication is equivalet in HIV-2. AIDS Res Hum Retroviruses 9: 1025–1030PubMedCrossRefGoogle Scholar
  23. Muesing MA, Smith DH, Cabradilla CD, Benton CV, Lasky LA, Capon DJ (1985) Nucleic acid structure and expression of the human AIDS/lymphadenopathy retrovirus. Nature 313: 450–458PubMedCrossRefGoogle Scholar
  24. Myers G, Joseph S, Berzofsky J, Rabson A, Smith T, Wong-Staal F (1989) Human retroviruses and AIDS 1989. Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  25. Myers G, Wain-Hobson S, Pavlakis G, Korber B, Smith R (1993) Human retroviruses and AIDS 1993. Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  26. Nishino Y, Kishi M, Sumiya M, Ogawa K, Adachi A, Maotani-lmai K, Kato S, Hirai K, Ikuta K (1991) Human immunodeficiency virus type 1 vif, vpr, and vpu mutants can produce persistently infected cells. Arch Virol 120: 181–192PubMedCrossRefGoogle Scholar
  27. Oberste MS, Gonda MA (1992) Conservation of amino-acid sequence motifs in lentivirus vif proteins. Virus Genes 6: 95–102PubMedCrossRefGoogle Scholar
  28. Rabson AB, Martin MA (1985) Molecular organization of the AIDS retrovirus. Cell 40: 477–480PubMedCrossRefGoogle Scholar
  29. Ratner L, Haseltine W, Patarca R, Livak DJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehom EA, Baumeister K, Ivanoff L, Petteway SR, Pearson ML, Lautenberger JA, Papas TS, Ghrayeb J, Chang NT, Gallo RC, Wong-Staal F (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313: 277–284PubMedCrossRefGoogle Scholar
  30. Rosen CA, Sodroski JG, Goh WC, Dayton AI, Lippke J, Haseltine WA (1986) Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III. Nature 319: 555–559PubMedCrossRefGoogle Scholar
  31. Sakai H, Shibata R, Sakuragi J-I, Sakuragi S, Kawamura M, Adachi A (1993) Cell-dependent requirement of human immunodeficiency virus type 1 vif protein for maturation of virus particles. J Virol 67: 1663–1666PubMedGoogle Scholar
  32. Sakai K, Ma X-Y, Volsky DJ (1988a) Low-cytopathic infectious clone of human immunodeficiency virus type 1 (HIV-1). FEBS Lett 238: 257–261PubMedCrossRefGoogle Scholar
  33. Sakai K, Dewhurst S, Ma X-Y, Volsky DJ (1988b) Differences in cytopathogenicity and host cell range among infectious molecular clones of human immunodeficiency virus type 1 simultaneously isolated from an individual. J Virol 62: 4078–4085PubMedGoogle Scholar
  34. Sakai K, Ma X-Y, Gordienko I, Volsky DJ (1991) Recombinational analysis of a natural noncytopathic human immunodeficiency virus type 1 (HIV-1) isolate; role of the vif gene in HIV-1 infection kinetics and cytopathicity. J Virol 65: 5765–5773PubMedGoogle Scholar
  35. Sanchez-Pescador R, Power MD, Barr PJ, Steimer KS, Stempien MM (1985) Nucleotide sequence and expression of an AIDS-associated retrovirus. (ARV-2). Science 227: 484–492PubMedCrossRefGoogle Scholar
  36. Schwander S, Braun RW, Kuhn JE, Hufert FT, Kern P, Dietrich M, Wieland U (1992) Prevalence of antibodies to recombinant virion infectivity factor in the sera of prospectively studied patients with HIV-1 infection. J Med Virol 36: 142–146PubMedCrossRefGoogle Scholar
  37. Schwartz S, Felber BK, Pavlakis GN (1991) Expression of human immunodeficiency virus type 1 vif and vpr mRNAs is rev-dependent and regulated by splicing. Virology 183: 677–686PubMedCrossRefGoogle Scholar
  38. Sodroski J, Goh W-C, Rosen C, Tartat A, Portetelle D, Burny A, Haseltine W (1986a) Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions. Science 231: 1549–1553PubMedCrossRefGoogle Scholar
  39. Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W (1986b) A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 321: 412–417PubMedCrossRefGoogle Scholar
  40. Sova P, Volsky DJ (1993) Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1. J Virol 67: 6322–6326PubMedGoogle Scholar
  41. Sova P, van Ranst M, Gupta P, Balachandran R, Chao W, Itescu S, McKinley G, Volsky, DJ (1995) The conservation of intact human immunodeficiency virus type 1 (HIV-1) vif gene in primary virus isolates from symptomatic and asymptomatic individuals and in vivo. J Virology (in press)Google Scholar
  42. Strebel K, Daugherty D, Clouse K, Cohen D, Folks T, Martin MA (1987) The HIV “A” (sor) gene product is essential for virus infectivity. Nature 328: 728–730PubMedCrossRefGoogle Scholar
  43. Tomonaga K, Norimine J, Shin Y-S, Fukasawa M, Miyazawa T, Adachi A, Toyosaki T, Kawaguchi Y, Kai C, Mikami T (1992) Identification of a feline immunodeficiency virus gene which is essential for cell-free-virus infectivity. J Virol 66: 6181–6185PubMedGoogle Scholar
  44. von Schwedler U, Song J, Aiken C, Trono D (1993) vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J Virol 67: 4945–4955PubMedGoogle Scholar
  45. Wain-Hobson S, Sonigo P, Danos O, Cole S, Alizon M (1985) Nucleotide sequence of the AIDS virus, LAV. Cell 40: 9–17PubMedCrossRefGoogle Scholar
  46. Wieland U, Kratschmann H, Kehm R, Kuhn JE, Naher H, Kramer MD, Braun RW (1991) Antigenic domains of the HIV-1 vif protein as recognized by human sera and murine monoclonal antibodies. AIDS Res Hum Retroviruses 7: 861–867PubMedCrossRefGoogle Scholar
  47. Wieland U, Hartmann J, Suhr H, Salzberger B, Eggers HJ, Kuhn JE (1994) in vivo genetic variability of the HIV-1 vif gene. Virology 203: 43–51PubMedCrossRefGoogle Scholar
  48. Wong-Staal F, Gallo RC (1985) Human T-lymphotropic retroviruses. Nature 317: 395–403PubMedCrossRefGoogle Scholar
  49. Yuan X, Matsuda Z, Matsuda M, Essex M, Lee T-H (1990) Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses 6: 1265–1271PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • D. J. Volsky
    • 1
  • M. J. Potash
    • 1
  • M. Simm
    • 1
  • P. Sova
    • 1
  • X. Y. Ma
    • 1
  • W. Chao
    • 1
  • M. Shahabuddin
    • 1
  1. 1.Molecular Virology LaboratorySt. Luke’s-Roosevelt Hospital Center and College of Physicians and Surgeons, Columbia UniversityNew YorkUSA

Personalised recommendations