The Human Immunodeficiency Virus Type 1 Rev Protein: A Pivotal Protein in the Viral Life Cycle

  • T. Hope
  • R. J. Pomerantz
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 193)


The human immunodeficiency virus type 1 (HIV-1) and related lentiviruses have more complex genomes than typical retroviruses (Cullen 1991). HIV-1 expresses at least nine different genes in a temporally regulated manner (Kim et al. 1989). In addition to the gag, pol, and env genes common to all retroviruses, HIV-1 also encodes genes for tat, rev, nef, vif, vpu, and vpr (Rosenblat et al., this volume). To encode nine different genes in a small, approximately 9-kb genome, the virus employs alternative reading frames and complex patterns of RNA splicing (Gallo et al. 1988; Schwartz et al. 1990a). The HIV-1 protein Rev (regulator of expression of the virion) plays an essential role in the temporal regulation of virus gene expression during a replication cycle (Kim et al. 1989; Pomerantz et al. 1990). The genes expressed by HIV-1 can be separated into two distinct groups based on whether their expression is Rev-dependent or not (Schwartz et al. 1990b; Hammerskjöld et al. 1989; Malim et al. 1989; Garrett et al. 1991). The Rev-inde-pendent or early genes encode Tat, Rev, and Nef. The Rev-dependent or late genes are important for virion production and encode the structural proteins Gag, Pol, and Env and the accessory products Vif, Vpu, and Vpr. Rev is absolutely required for HIV-1 replication. Proviruses that lack Rev function remain transcriptionally active, but fail to generate new viral particles.


Human Immunodeficiency Virus Acquire Immune Deficiency Syndrome Viral mRNA Ciency Virus Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad N, Maitra RK, Venkatesan S (1989) Rev induced modulation of Nef protein underlies temporal regulation of human immunodeficiency virus replication. Proc Natl Acad Sci USA 86: 6111–6115PubMedCrossRefGoogle Scholar
  2. Arrigo SJ, Chen ISY (1991) Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5: 808–819PubMedCrossRefGoogle Scholar
  3. Baltimore D (1988) Intracellular immunization. Nature 335: 395–396PubMedCrossRefGoogle Scholar
  4. Bartel DP, Zapp ML, Green MR, Szostak JW (1991) HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67: 529–536PubMedCrossRefGoogle Scholar
  5. Berberich SL, Stoltzfus CM (1991) Mutations in the regions of the Rous sacroma virus 3′ splice sites: implications for regulation of alternative splicing. J Virol 65: 2640–2646PubMedGoogle Scholar
  6. Berberich SL, Macias M, Zhang L, Turek LP, Stoltzfus CM (1990) Comparison of RSV RNA processing in chicken (CEF) and mouse (3T3) fibroblasts: evidence for double-spliced RNA in nonpermissive mouse cells. J Virol 64: 4313–4320PubMedGoogle Scholar
  7. Bogerd HP, Greene WC (1993) Dominant negative mutants of HTL-1 Rex and HIV-1 Rev fail to multimerize in vivo. J Virol 67: 2496–2502PubMedGoogle Scholar
  8. Bogerd HP, Fridell RA, Blair WS, Cullen BR (1993) Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J Virol 67: 5030–5034PubMedGoogle Scholar
  9. Bray M, Prasad S, Dubay JW, Hunter E, Jeang K-T, Rekosh D, Hammarskjold M-L (1994) A small element from the Mason-Pfizer monkey virus genome makes HIV-1 expression and replication rev-independent. Proc Natl Acad Sci USA 90: 1256–1260CrossRefGoogle Scholar
  10. Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252: 1167–1171 (published erratum appears in Science (1992) 255: 665)CrossRefGoogle Scholar
  11. Chang DD, Sharp PA (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59: 789–795PubMedCrossRefGoogle Scholar
  12. Chang DD, Sharp P (1990) Messenger RNA transport and HIV Rev. Science 249: 614–615PubMedCrossRefGoogle Scholar
  13. Cochrane AW, Golub E, Volsky D, Ruben S, Rosen CA (1989) Functional significance of phosphorylation of the human immunodeficiency virus Rev protein. J Virol 63: 4438–4441PubMedGoogle Scholar
  14. Cochrane AW, Chen C-H, Rosen CA (1990a) Specific interaction of the human immunodeficiency virus Rev protein with a structured region in the env mRNA. Proc Natl Acad Sci USA 87: 1198–1202PubMedCrossRefGoogle Scholar
  15. Cochrane AW, Perkins A, Rosen CA (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol 64: 881–885PubMedGoogle Scholar
  16. Cochrane AW, Jones KS, Beidas S, Dillon PJ, Skalka AM, Rosen CA (1991) Identification and characterization of intragenic sequences which repress human immunodeficiency virus structural gene expression. J Virol 65: 5305–5313PubMedGoogle Scholar
  17. Cullen BR (1991) Human immunodeficiency virus as a prototypic complex retrovirus. J Virol 65: 1053–1056PubMedGoogle Scholar
  18. D’Agostino DM, Felber BK, Harrison JE, Pavlakis GN (1992) The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs. Mol Cell Biol 12: 1375–1386PubMedGoogle Scholar
  19. Daly TJ, Cook KS, Gran GS, Maione TE, Rusche JR (1989) Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature 342: 816–819PubMedCrossRefGoogle Scholar
  20. Duan LX, Bagasra O, Laughlin MA, Oakes JW, Pomerantz RJ (1994) Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proc Natl Acad Sci USA 91: 5075–5079PubMedCrossRefGoogle Scholar
  21. Emerman M, Vazeux R, Peden K (1989) the rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57: 1155–1165PubMedCrossRefGoogle Scholar
  22. Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 56: 807–817CrossRefGoogle Scholar
  23. Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, Pavlakis GN (1989) Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci USA 86: 1495–1499PubMedCrossRefGoogle Scholar
  24. Felber BK, Drysdale CM, Pavlakis GN (1990) Feedback regulation of the human immunodeficiency virus type 1 expression by the Rev protein. J Virol 64: 3734–3741PubMedGoogle Scholar
  25. Gallo R, Wong-Staal F, Montagnier L, Haeltine WA, Yoshida M (1988) HIV/HTLV gene nomenclature. Nature 333: 504–505PubMedCrossRefGoogle Scholar
  26. Garrett E, Tiley L and Cullen BR (1991) Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol 65: 1653–1657PubMedGoogle Scholar
  27. Green MR (1991) Biochemical mechanisms of constitutive and regulated pre-mRNA splicing. Annu Rev Cell Biol 7: 559–599PubMedCrossRefGoogle Scholar
  28. Green MR, Zapp ML (1989) Human immunodeficiency virus: revving up gene expression. Nature 338: 200–201PubMedCrossRefGoogle Scholar
  29. Hadzopoulou-Cladaras M, Felber BK, Cladaras C, Athanassopoulos A, Tse A, Pavlakis GN (1989) The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol 63: 1265–1274PubMedGoogle Scholar
  30. Hammarskjöld M-L, Heimer J, Hammarskjöld B, Sangwan I, Albert L, Rekosh D (1989) Regulation of human immunodeficiency virus env expression by the rev gene product. J Virol 63: 1959–1966PubMedGoogle Scholar
  31. Hauber J, Bouvier M, Malim MH, Cullen BR (1988) Phosphorylation of the rev gene product of human immunodeficiency virus type 1. J Virol 62: 4801–4804PubMedGoogle Scholar
  32. Heaphy S, Finch JT, Gait MJ, Kam J, Singh M (1991) Human immunodeficiency virus type 1 regulator of virion expression, rev, forms nucleoprotein filaments after binding to a purine-rich “bubble” located within the rev-responsive region of viral RNAs. Proc Natl Acad Sci USA 88: 7366–7370PubMedCrossRefGoogle Scholar
  33. Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329: 219–222PubMedCrossRefGoogle Scholar
  34. Hope TJ, McDonald D, Huang X, Low J, Parslow TG (1990a) Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. J Virol 65: 5360–5366Google Scholar
  35. Hope TJ, Huang X, McDonald D, Parslow TG (1990b) Steroid-receptor fusion of the HIV-1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc Natl Acad Sci USA 87: 7787–7791PubMedCrossRefGoogle Scholar
  36. Hope TJ, Bond BL, McDonald D, Klein NP, Parslow TG (1991) Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type 1 Rex are functionally interchangeable and share an essential peptide motif. J Virol 65: 6001–6007PubMedGoogle Scholar
  37. Hope TJ, Klein NP, Elder ME, Parslow TG (1992) trans-Dominant inhibition of human immunodeficiency virus type 1 Rev occurs through formation of inactive protein complexes. J Virol 66: 1849–1855PubMedGoogle Scholar
  38. Huang X, Hope TJ, Bond BL, McDonald D, Grahl K, Parslow TG (1991) Minimal Rev-response element for type 1 human immunodeficiency virus. J Virol 65: 2131–2134PubMedGoogle Scholar
  39. Ivey-Hoyle M, Rosenberg M (1990) Rev-dependent expression of human immunodeficiency virus type 1 gp160 in Drosophila melanogaster cells. Mol Cell Biol 10: 6152–6160PubMedGoogle Scholar
  40. Katz RA, Skalka AM (1990) Control of retroviral RNA splicing through maintenance of suboptimal processing signals. Mol Cell Biol 10: 696–704PubMedGoogle Scholar
  41. Kim SY, Byrn R, Groopman J, Baltimore D (1989) Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression. J Virol 63: 3708–3713PubMedGoogle Scholar
  42. Kjems J, Sharp PA (1993) The basic domain of Rev from human immunodeficiency virus type 1 specifically blocks the entry of U4/U6. U5 small nuclear ribonucleoprotein in spliceosome assembly. J Virol 67: 4769–4776PubMedGoogle Scholar
  43. Kjems J, Frankel AD, Sharp PA (1991) Specific regulation of mRNA splicing in vitro by a peptide from HIV-1 Rev. Cell 67: 169–178PubMedCrossRefGoogle Scholar
  44. Kjems J, Calnan BJ, Frankel AD, Sharp PA (1992) Specific binding of a basic peptide from HIV-1 Rev. EMBO J 11: 1119–1129PubMedGoogle Scholar
  45. Knight DM, Flomerfelt FA, Ghrayeb J (1987) Expression of the art/trs protein of HIV and study of its role in viral envelope synthesis. Nature 236: 837–840Google Scholar
  46. Laughlin M, Zeichner S, Kolson D, Alwine JC, Seshamma T, Pomerantz RJ, Gonzales-Scarano F (1993) Sodium butyrate treatment of cells latently infected with HIV-1 results in the expression of unspliced viral RNA. Virology 196: 496–505PubMedCrossRefGoogle Scholar
  47. Lazinski D, Grzadzielska E, Das A (1989) Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 59: 207–218PubMedCrossRefGoogle Scholar
  48. Lee T, Coligan JE, Allan JS, McLane MF, Groopman JE, Essex M (1986) A new HTLV-III/LAV protein encoded by a gene forund in cytopathic retroviruses. Science 231: 1546–1549PubMedCrossRefGoogle Scholar
  49. Legrain P, Rosbash M (1989) Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57: 573–583PubMedCrossRefGoogle Scholar
  50. Lu XB, Heimer J, Rekosh D, Hammarskjold ML (1990) U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc Natl Acad Sci USA 87: 7598–7602PubMedCrossRefGoogle Scholar
  51. Malim MH, Cullen BR (1991) HIV-1 structural gene expression required the binding of multiple Rev monomers to the viral RRE: Implication for HIV-1 latency. Cell 65: 241–248PubMedCrossRefGoogle Scholar
  52. Malim MG, Cullen BR (1993) Rev and the fate of pre-mRNA in the nucleus—implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol 13: 6180–6189PubMedGoogle Scholar
  53. Malim MH, Hauber J, Le S-Y, Maizel JV, Cullen BR (1989a) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257PubMedCrossRefGoogle Scholar
  54. Malim MH, Bohnlein S, Hauber J, Cullen BR (1989b) Functional dissection of the HIV-1 Rev transactivator—derivation of a trans-dominant repressor of Rev function. Cell 58: 205–214PubMedCrossRefGoogle Scholar
  55. Malim MH, Böhnlein S, Fenrick R, Le S-Y, Maizel JV, Cullen BR (1989c) Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proc Natl Acad Sci USA 86: 8222–8226PubMedCrossRefGoogle Scholar
  56. Malim MH, McCarn DF, Tiley LS, Cullen BR (1991) Mutational definition of the human immunodeficiency virus type 1 rev activation domain. J Virol 65: 4248–4254PubMedGoogle Scholar
  57. McDonald D, Hope TJ, ParslowTG (1992) Posttranscriptional regulation by the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type 1 Rex proteins through a heterologous RNA binding site. J Virol 66: 7232–7238PubMedGoogle Scholar
  58. Nalin CM, Purcell RD, Antelman D, Mueller D, Tomchak L, Wegrynski D, McCarney E, Toome V, Kramer R, Hsu M-C (1990) Purification and characterization of recombinant Rev protein of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 87: 7593–7597PubMedCrossRefGoogle Scholar
  59. Olsen HS, Cochrane AW, Dillon PJ, Nalin CM, Rosen CA (1990) Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes Dev 4: 1357–1364PubMedCrossRefGoogle Scholar
  60. Perkins A, Cochrane A, Ruben S, Rosen C (1989) Structural and functional characterization of the human immunodeficiency virus rev protein. J AIDS 2: 256–263Google Scholar
  61. Pomerantz RJ, Trono D, Feinberg MB, Baltimore D (1990) Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61: 1271–1276PubMedCrossRefGoogle Scholar
  62. Pomerantz RJ, Seshamma T, Trono D (1992) Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency. J Virol 66: 1809–1813PubMedGoogle Scholar
  63. Quintrell K et al (1980) Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus. J Mol Biol 143: 363–393PubMedCrossRefGoogle Scholar
  64. Rice AP, Mathews MB (1988) Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332: 551–553PubMedCrossRefGoogle Scholar
  65. Robert-Guroff M, Popovic M, Gartner S, Markham P, Gallo RC, Reitz MS (1990) Structure and expression of tat-, rev-, and nef-specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J Virol 64: 3391–3398PubMedGoogle Scholar
  66. Rosen CA, Terwilliger E, Dayton A, Sodroski JG, Haseltine WA (1988) Intragenic cis-acting art gene responsive sequences of the human immunodeficiency virus. Proc Natl Acad Sci USA 85: 2071–2075PubMedCrossRefGoogle Scholar
  67. Ruhl M, Himmelspach M, Bahr GM, Hammerschmid F, Jaksche H, Wolff B, Aschauer H, Farrington GK, Probst H, Bevec D, Hauber J (1993) Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol 123: 1–12CrossRefGoogle Scholar
  68. Saikumar P, Murali R, Reddy EF (1990) Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proc Natl Acad Sci USA 87: 8452–8456PubMedCrossRefGoogle Scholar
  69. Schwartz S, Felber BK, Fenyo EM, Pavlakis GN (1990a) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64: 2519–2529PubMedGoogle Scholar
  70. Schwartz S, Felber BK, Fenyo EM, Pavlakis GN (1990b) Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64: 5448–5456PubMedGoogle Scholar
  71. Schwartz S, Campbell M, Nasioulas G, Harrison J, Felber BK, Pavlakis GN (1992a) Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression. J Virol 66: 7176–7182PubMedGoogle Scholar
  72. Schwartz S, Felber BK, Pavlakis GN (1992b) Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J Virol 66: 150–159PubMedGoogle Scholar
  73. Seshamma T, Bagasra O, Trono D, Baltimore D, Pomerantz RJ (1992) Blocked early-stage latency in the peripheral blood cells of certain individuals infected with human immunodeficiency virus type 1. Proc Natl Acad Sci USA 89: 10663–10667PubMedCrossRefGoogle Scholar
  74. Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W (1986) A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature 321: 412–417PubMedCrossRefGoogle Scholar
  75. Tan R, Chen L, Buettner JA, Hudson D, Frankel AD (1993) RNA recognition by an isolated α helix. Cell 73: 1031–1040PubMedCrossRefGoogle Scholar
  76. Tao J, Frankel AD (1993) Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Natl Acad Sci USA 90: 1571–1575PubMedCrossRefGoogle Scholar
  77. Trono D, Baltimore D (1990) A human cell factor is essential for HIV-1 Rev action. EMBO J 9: 4155–4160PubMedGoogle Scholar
  78. Venkatesh LK, Mohammed S, Chinnadurai G (1990) Functional domains of the HIV-1 rev gene required for trans-regulation and subcellular localization. Virology 176: 29–47CrossRefGoogle Scholar
  79. Venkatesan S, Gerstberger SM, Par H, Holland SM, Nam Y-S (1992) Human immunodeficiency virus type 1 Rev activation can be achieved without rev-responsive element RNA if Rev is directed to the target as a Rev/MS2 fusion protein which tethers the MS2 operator RNA. J Virol 66: 7469–7480PubMedGoogle Scholar
  80. Winslow BJ, Trono D (1993) The blocks to human immunodeficiency virus type 1 Tat and Rev functions in mouse cell lines are independent. J Virol 67: 2349–2354PubMedGoogle Scholar
  81. Zapp ML, Green MR (1989) Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342: 714–716PubMedCrossRefGoogle Scholar
  82. Zapp ML, Hope TJ, Parslow TG, Green MR (1991) Oligomerization and RNA binding domains of the HIV-1 Rev protein: a dual function for an arginine-rich binding motif. Proc Natl Acad Sci USA 88: 7734–7738PubMedCrossRefGoogle Scholar
  83. Zapp ML, Stern S, Green MR (1993) Small molecules that selectively block RNA binding of HIV-1 Rev protein inhibit Rev function and viral production. Cell 75: 969–978CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • T. Hope
    • 1
  • R. J. Pomerantz
    • 2
  1. 1.The Salk InstituteInfectious Disease LaboratorySan DiegoUSA
  2. 2.The Dorrance H. Hamilton Laboratories, Section of Molecular Retrovirology, Division of infectious-Diseases, Department of MedicineJefferson Medical College, Thomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations