Skip to main content

The vpr Regulatory Gene of HIV

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 193))

Abstract

Virus replication is the result of a series of two-way communications between the viral parasite and its host. Since viruses are essentially inert objects in the absence of a host cell, all aspects of their natural history can be defined in terms of these interactions. For example, whether or not a cell is permissive to infection and subsequent virus replication, or whether non-productive infection results, is determined by the expression of specific cellular factors which are necessary for each stage in the viral life cycle. In turn, the virus may modulate or enhance the expression of these factors to suit its particular needs. Viral tropism is then similarly determined through these interactions, since the presence of the viral receptor molecule on a cell is only the first requisite for productive infection. The pathogenicity of a virus is also clearly the result of these interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguanno S, Bouche M, Adamo S, Molinaro M (1990) 12-O-Tetradecanoylphorbol-13-acetate-induced differentiation of a human rhabdomyosarcoma cell Line. Cancer Res 50: 3377–3382

    PubMed  CAS  Google Scholar 

  • Arrigo SJ, Chen ISY (1991) Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5: 808–819

    Article  PubMed  CAS  Google Scholar 

  • Balliet JW, Kolson DL, Eiger G, Kim FM, McGann KA, Srinivasan A, Collman R (1994) Distinct effect in primary macrophages and lymphocytes of the human immunodeficiency virus typw 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary isolate. Virology 200: 623–631

    Article  PubMed  CAS  Google Scholar 

  • Balotta C, Lusso P, Crowley R, Gallo RC, Franchini G (1993) Antisense phosphorothioate oligodeoxy-nucleotides targeted to the vpr gene inhibit human immunodeficiency virus type 1 replication in primary human macrophages. J Virol 67: 4409–4414

    PubMed  CAS  Google Scholar 

  • Barre-Sinoussi F, Cherman JC, Rey F, Nugeyre MT, Chameret S, Gruest J, Dauguet C, Axlerblin C, Brun-Ve’zinet F, Rauzioux C, Rozenbaum W and Montagnier L (1984) Isolation of a T-lymphotropic retro-virus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871

    Article  Google Scholar 

  • Bednarik DP, Folks TM (1992) Mechanisms of HIV-1 latency. AIDS 6: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Bednarik DRP, Mosca JD, Raj NBK (1987) Methylation as a modulator of expression of human immunodeficiency virus. J Virol 61: 1253–1257

    PubMed  CAS  Google Scholar 

  • Bukrinsky Ml, Stanwick TL, Dempsey MP, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254: 423–427

    Article  PubMed  CAS  Google Scholar 

  • Butera ST, Perez VL, Wu B-Y, Nabel GJ, Folks TM (1991) Oscillation of the human immunodeficiency virus surface receptor is regulated by the state of viral activation in a CD4+ cell model of chronic infection. J Virol 65: 4645–4653

    PubMed  CAS  Google Scholar 

  • Clapham PR (1991) Human immunodeficiency virus infectin of non-haematopoietic cells: the role of CD4 independent entry. Med Virol 1: 51–58

    Article  CAS  Google Scholar 

  • Clapham PR, Weber JN, Whitby D, Mclntosh K, Gagleish AG, Maddon PJ, Deen KC, Sweet RW, Weiss RA (1989) Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T-cells and monocytes but not for brain and muscle cells. Nature 337: 368–370

    Article  PubMed  CAS  Google Scholar 

  • Clapham PR, Blanc D, Weiss RA (1991) Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus. Virology 181: 703–715

    Article  PubMed  CAS  Google Scholar 

  • Cohen EA, Dehni G, Sodroski JG, Haseltine WH (1990a) Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol 64: 3097–3099

    PubMed  CAS  Google Scholar 

  • Cohen EA, Terwilliger EF, Jalinoos Y, Proulx J, Sodroski JG, Haseltine WH (1990b) Identification of HIV-1 vpr product and function. J AIDS 3: 11–18

    CAS  Google Scholar 

  • Cullen BR (1991) Human immunodeficiency virus as a prototypic complex retrovirus. J Virol 65: 1053–1056

    PubMed  CAS  Google Scholar 

  • Dahl KE, Burrage T, Jones F, Miller G (1990) Persistent nonproductive infection of Epstein-Barr virustransformed human B lymphocytes by human immunodeficiency virus type 1. J Virol 64: 1771–1783

    PubMed  CAS  Google Scholar 

  • Daniel MD, Desrosiers RC (1989) Use of simian immunodeficiency virus for evaluation of AIDS vaccine strategies. AIDS 3: S131–S133

    Article  PubMed  Google Scholar 

  • Dedera D, Hu W, Vander Heyden N, Ratner L (1989) Viral protein R of human immunodeficiency virus types 1 and 2 is dispensible for replication and cytopathogenicity in lymphoid cells. J Virol 63: 3205–3208

    PubMed  CAS  Google Scholar 

  • Embretson J, Zupancic M, Beneke J, Till M, Wolinsky S, Ribas JL, Burke A, Haase AT (1993a) Analysis of human immunodeficiency virus-infected tissues by amplification of in situ hybridization reveals latent and permissive infections at single-cell resolution. Proc Natl Acad Sci USA 90: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner RK, Haase AT (1993b) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubatin period of AIDS. Nature (Lond) 362: 359–362

    Article  CAS  Google Scholar 

  • Felber BK, Pavlakis GN (1993) Molecular biology of HIV-1: positive and negative regulatory elements important for virus expression. AIDS 7: S51–S62

    Article  PubMed  Google Scholar 

  • Felix CA, Chavez Kappel C, Mitsudomi T, Nau MM, Tsokos M, Crouch GD, Nisen PD, Winick NJ, Helman LJ (1992) Frequency and diversity of p53 mutations in childhood rhabdomyosarcoma. Cancer Res 52: 2243–2247

    PubMed  CAS  Google Scholar 

  • Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS (1987) Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238: 800–802

    Article  PubMed  CAS  Google Scholar 

  • Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS (1989) Tumor necrosis factor α induces expresssion of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 86: 2365–2368

    Article  PubMed  CAS  Google Scholar 

  • Francini G, Rusche JR, O’Keeffe TJ, Wong-Staal F (1988) The human immunodeficiency virus type 2 (HIV-2) contains a novel gene encoding a 16 kD protein associated with mature virions. AIDS Res Hum Retroviruses 4: 243–249

    Article  Google Scholar 

  • Fukasawa M, Miura T, Hasegawa A, Morikawa S, Tsujimoto H, Miki K, Kitamura T, Hayami M (1988) Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature 333: 457–461

    Article  PubMed  CAS  Google Scholar 

  • Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B, White G, Foster P, Markham PA (1984) Human T-lymphotropic retrovirus, HTLV-III, isolated from AIDS patients and donors at risk for AIDS. Science 224: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Garrett ED, Tiley LS, Cullen BR (1991) Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol 65: 1653–1657

    PubMed  CAS  Google Scholar 

  • Gazzolo L, Macé K (1990) Regulation of HIV-1 replication in promonocytic U937 cells. Res Virol 141: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Gendelman HE, Phelps W, Feigenbaum L, Ostrove JM, Adachi A, Howley PM, Khoury G, Ginsberg HS, Martin MA (1986) Transactivation of the human immunodeficiency virus long terminal repeat sequences by DNA viruses. Proc Natl Acad Sci USA 83: 9759–9763.

    Article  PubMed  CAS  Google Scholar 

  • Gras-Masse H, Ameisen JC, Boutillon C, Gesquiere JC, Vian S, Neyrinck JL, Drobecq H, Capron A, Tartar A (1990) A synthetic protein corresponding to the entire vpr gene product from the human immunodeficiency virus HIV-1 is recognized by antibodies from HIV-infected patients. Int J Pept Protein Res 36: 219–26

    Article  PubMed  CAS  Google Scholar 

  • Haggerty S, Dempsey MP, Bukrinsky MI, Guo L, Stevenson M (1991) Posttranslational modifications within the HIV-1 envelope glycoprotein which restrict virus assembly and CD4-dependent infection. AIDS Res Hum Retroviruses 7: 501–510

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo RC, Franchini G (1990) The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages. Proc Natl Acad Sci USA 87: 8080–8084

    Article  PubMed  CAS  Google Scholar 

  • Heinzinger HE, Bukrinsky Ml, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nodividing cells. Proc Natl Acad USA 91: 7311–7315

    Article  CAS  Google Scholar 

  • Hiti AL, Bogenmann E, Gonzales F, Jones PA (1989) Expression of the MyoD1 muscle determination gene defines differentiation capability but not tumorigenicity of human rhabdomyosarcomas. Mol Cell Biol 9: 4722–4730

    PubMed  CAS  Google Scholar 

  • Kappes JC, Morrow CD, Lee SW, Jameson BA, Kent SB, Hood LE, Shaw GM, Hahn BH (1988) Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC. J Virol 62: 3501–3505

    PubMed  CAS  Google Scholar 

  • Kestler HW III, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65: 651–662

    Article  PubMed  CAS  Google Scholar 

  • Kitano K, Baldwin GC, Raines MA, Golde DW (1990) Differentiating agents facilitate infection of myeloid leukemia cell lines by monocytotropic HIV-1 strains. Blood 76: 1980–1988

    PubMed  CAS  Google Scholar 

  • Lang SM, Weeger M, Stahl-Henning C, Coulibaly C, Hunsmann G, Müller J, Müller-Hermelink H, Fuchs D, Wachter H, Daniel MM, Desrosiers RC, Fleckenstein B (1993) Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67: 902–912

    PubMed  CAS  Google Scholar 

  • Lavallee C, Yao XJ, Ladha A, Gottlinger H, Haseltine WA, Cohen EA (1994) Requirement of the Pr55gag precursor for incorporation of the Vpr product into human immunodeficiency virus type 1 particles. J Virol 68: 1926–1934

    PubMed  CAS  Google Scholar 

  • Levy DN (1994) Studies of HIV-1 Vpr PhD thesis, University of Pennsylvania, Philadelphia, PA

    Google Scholar 

  • Levy DN, Weiner DB (1993) HIV regulatory gene function analysis in a rhabdomyosarcoma cell line. In: Ginsberb HS, Brown F, Chanock RM, Lerner RA Vaccines93: modern approaches to new vaccines including the prevention of AIDS. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Levy DN, Fernandes LS, Williams WV, Weiner DB (1993) Induction of cell differentiation by human immunodeficiency virus 1 vpr. Cell 72: 541–550

    Article  PubMed  CAS  Google Scholar 

  • Levy DN, Refaeli Y, MacGreggor RR, Weiner DB (1994) Serum vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 91: 10873–10877

    Article  PubMed  CAS  Google Scholar 

  • Levy DN, Refaeli Y, Weiner DB (1995a) Extracellular vpr protein increases cellular permissiveness to HIV replication and reactivates virus from latency. J Virol (in press)

    Google Scholar 

  • Levy DN, Refaeli Y, Weiner DB (1995b) (submitted for publication)

    Google Scholar 

  • Levy JA (1993) Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 57: 183–289

    PubMed  CAS  Google Scholar 

  • Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM, Oshiro LS (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225: 840–842

    Article  PubMed  CAS  Google Scholar 

  • Lu Y-L, Spearman P, Ratner L (1993) Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 67: 6542–6550

    PubMed  CAS  Google Scholar 

  • Marck C (1988) “DNA Strider”: a “C” program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16: 1829–1836

    Article  PubMed  CAS  Google Scholar 

  • McCune JM (1991) HIV-1 the infectivity process in vivo. Cell 64: 351–363

    Article  PubMed  CAS  Google Scholar 

  • Meylan PRA, Spina CA, Richman DD, Kombluth RS (1993) In vitro differentiation of monocytoid THP-1 cells affects their permissiveness for HIV strains: a model for studying the cellular basis of HIV differential tropism. Virology 193: 256–267

    Article  PubMed  CAS  Google Scholar 

  • Mikovits JA, Raziuddin Gonda M, Ruta M, Lohrey NC, Kung H-F, Ruscetti FW (1990) Negative regulation of human immunodeficiency virus replication in monocytes. J Exp Med 171: 1705–1720

    Article  PubMed  CAS  Google Scholar 

  • Mikovits JA, Lohrey NC, Schulof R, Courtlëss J, Ruscetti FW (1992) Activation of infectious virus from latent human immunodeficiency virus infection of monocytes in vivo. J Clin Invest 90: 1486–1491

    Article  PubMed  CAS  Google Scholar 

  • Mosca JD, Bednarik DP, Raj NB, Rosen CA, Sodroski JG, Haseltine WA, Pitha PM (1987) herpes simplex virus type 1 can reactivate transcription of latent human immunodeficiency virus. Nature (Lond): 325: 67–70

    Article  CAS  Google Scholar 

  • Myers G, Korber B, Berzofsky JA, Smith RF, Pavlakis GN (1991) Hum Retroviruses AIDS III: 6–22

    Google Scholar 

  • Ogawa K, Shibata R, Kiyomasu T, Higuchi I, Kishida Y, Ishimoto A, Adachi A (1989) Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol 63: 4110–4114

    PubMed  CAS  Google Scholar 

  • Oldstone MBA (1991) Molecular anatomy of viral persistence. J Virol 65: 6381–6386

    PubMed  CAS  Google Scholar 

  • Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM, Kotler DP, Fauci AS (1991) Lymphoid organs function as major reserviors for human immunodeficiency virus. Proc Natl Acad Sci USA 88: 9838–9842

    Article  PubMed  CAS  Google Scholar 

  • Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS (1993) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature (Lond) 362: 355–358

    Article  CAS  Google Scholar 

  • Pautrat G, Suzan M, Salaun D, Corbreau P, Allasia C, Morel G, Filippi P (1990) Human immunodeficiency virus type 1 infection of U937 cells promotes cell differentiation and a new pathway of viral assembly. Virology 179: 749–758

    Article  PubMed  CAS  Google Scholar 

  • Pavlakis GN, Schwartz S, D’Agostino DM, Felber BK (1992) Structure, splicing, and regulation of expression of HIV-1, a model for the general organization of lentiviruses and other complex retroviruses. In: AIDS Research Reviews, Vol. 2. Eds.: W.C. Koff, F. Wong-Staal, R.C. Kennedy, Marcel Dekker, Inc. N.Y., N.Y.

    Google Scholar 

  • Paxton W, Connor Rl, Landau NR (1993) Incorporation of vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J Virol 67: 7229–7237

    PubMed  CAS  Google Scholar 

  • Perez VL, Rowe T, Justement JS, Butera ST, June CH, Folks TM (1991) An HIV-1 infected T cell clone defective in IL-2 production and Ca2+ mobilization after CD3 stimulation. J Immunol 147: 3145–3148

    PubMed  CAS  Google Scholar 

  • Perno C-F, Yarchoan R, Cooney DA, Hartman NR, Webb DSA, Hao Z, Mitsuya H, Johns DG, Broder S (1989) Replication of human immunodificiency virus in monocytes. J Exp Med 169: 933–951

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz RJ, Trono D, Feinberg MB, Baltimore D (1990) Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61: 1271–1276

    Article  PubMed  CAS  Google Scholar 

  • Refaeli Y, Levy DN, Weiner DB (1995) (submitted for publication)

    Google Scholar 

  • Reiss P, Lange JM, de RA, de WF, Dekker J, Danner SA, Debouck C, Goudsmit J (1990) Antibody response to viral proteins U (vpu) and R(vpr) in HIV-1-infected individuals. J Acquir Immun Defic Syndr 3: 115–22

    CAS  Google Scholar 

  • Rich EA, Chen ISY, Zack JA, Leonard ML, O’Brien WA (1992) Increased susceptibility of differentiated mononuclear phagocytes to productive infection with human immunodeficiency virus-1 (HIV-1). J Clin Invest 89: 176–183

    Article  PubMed  CAS  Google Scholar 

  • Roulston A, D’Addario M, Boulerice F, Caplan S, Wainberg MA, Hiscott J (1992) Induction of monocytic differentiation and NF-KB-like activities by human immunodeficiency virus 1 infection of myelomonoblastic cells. J Exp Med 175: 751–763

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Igarashi H, Adachi A, Hayami M (1990) Identification and localization of vpr gene product of Human Immunodeficiency Virus Type 1. Virus Genes 4: 303–312

    Article  PubMed  CAS  Google Scholar 

  • Schnittman SM, Psallidopoulos MC, Clifford Lane H, Thompson L, Baseler M, Massari F, Fox CH, Salzman NP, Fauci AS (1989) The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 245: 305–308

    Article  PubMed  CAS  Google Scholar 

  • Schuitemaker H, Kootstra NA, Koppelman MHGM, Bruisten SM, Huisman HG, Tersmette M, Miedema F (1992) Proliferation-dependent HIV-1 infection of monocytes occurs during differentiation into macrophages. J Clin Invest 89: 1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Schüpbach J (1989) Human retrovirology. Facts and concepts. Springer, Berlin Heidelberg New York (Current Topics in Microbiology and immunology, vol 142)

    Google Scholar 

  • Shibata R, Miura T Hayami M, Ogawa K, Sakai H, Kiyomasu T, Ishimoto A, Adachi A (1990) Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genome in relation to HIV-1 and simian immunodeficiency virus SIVAGM. J Virol 64: 742–747

    PubMed  CAS  Google Scholar 

  • Siegel HN, Lukas RJ (1988) Morphological and Biochemical Differentiation of the Human Medulloblastoma Cell Line TE671. Dev Brain Res 44: 269–280

    Article  CAS  Google Scholar 

  • Silvennolnen O, Hure M (1990) Growth inhibition caused by serum depletion induces differentiation, interleukin 1 receptor expression and interleukin 1 responsiveness in the HL-60 promyelocytic leukemia cell line. Biochem Biophys Res Commun 168: 959–965

    Article  Google Scholar 

  • Srinivasan A, Goldsmith CS, York D, Anand R, Luciw P, Schochetman G, Palmer E, Bohan C (1988) Studies on human immunodeficiency virus-induced cytopathic effects: use of human rhabdomyosarcoma (RD) cells. Arch Virol 99: 21–30

    Article  PubMed  CAS  Google Scholar 

  • Stratton MR, Darling J, Pilkington GJ, Lantos PL, Reeves BR, Cooper CS (1989) Characterization of the human cell line TE671. Carcinogenesis 10: 899–905

    PubMed  CAS  Google Scholar 

  • Tateno M, Gonzalez-Scarano F, Levy JA (1989) Human immunodeficiency virus can infect CD4-negative human fibroblastoid cells. Proc Natl Acad Sci USA, 86: 4287–4290

    Article  CAS  Google Scholar 

  • Terwilliger EF (1992) The accessory gene functions of the primate immunity viruses. In: Koff WC, Wong-Staal F, Kennedy RC (eds) AIDS Research Reviews vol 2. Marcel Dekker, New York

    Google Scholar 

  • Tristem M, Marshal C, Karpas A, Hill F (1992) Evolution of the primate lentiviruses: evidence from vpx and vpr. EMBO J 11: 3405–3412

    PubMed  CAS  Google Scholar 

  • Tristem M, Marshal C, Karpas A, Petrik J, Hill F (1990) Origin of vpx in lentiviruses. [Letter]. Nature (Lond) 347: 341–342

    Article  CAS  Google Scholar 

  • Turpin JA, Vargo M, Meltzer MS (1992) Enhanced HIV-1 replication in retinoid-treated monocytes: retinoid effects mediated through mechanisms related to cell differentiation and to a direct transcriptional action on viral gene expression. J Immunol 148: 2539–2546

    PubMed  CAS  Google Scholar 

  • Valentin A, Von Gegerfelt A, Matsuda S, Nilsson K, Åsjö B (1991) In vitro maturation of mononuclear phagocytes and susceptibility to HIV-1 infection. J AIDS 4: 751–759

    CAS  Google Scholar 

  • Weiss RA, Clapham PR, McClure MO, McKeating JA, McKnight A, Dalgleish AG, Sattentau QJ, Weber JN (1988) Human immunodeficiency viruses: Neutralization and receptors. J AIDS 1: 536–541

    CAS  Google Scholar 

  • Werner A, Winskowsky G, Cichutek K, Norley SG, Kurth R (1990) Productive infection of both CD4+ and CD4- human cell lines with HIV-1, HIV-2 and SIVAGM. AIDS 6: 537–544

    Article  Google Scholar 

  • Westervelt P, Henkel T, Trowbridge DB, Orenstein J, Heuser J, Gendelman HE, Ratner L (1992) Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 66: 3925–3931

    PubMed  CAS  Google Scholar 

  • Winslow BJ, Pomerantz RJ, Bagasra O, Trono D (1993) HIV-1 latency due to the site of proviral integration. Virology 196: 849–854

    Article  PubMed  CAS  Google Scholar 

  • Wong-Staal F, Chanda PK, Ghrayeb J (1987) Human immunodeficiency virus: the eighth gene. AIDS Res Hum Retroviruses 3: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Yu XF, Ito S, Essex M, Lee TH (1988) A naturally immunogenic virion-associated protein specific for HIV-2 and SIV. Nature 335: 262–265

    Article  PubMed  CAS  Google Scholar 

  • Yu XF, Yu QC, Essex M, Lee TH (1991) The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J Virol 65: 5088–5091

    PubMed  CAS  Google Scholar 

  • Yuan X, Matsuda Z, Matsuda M, Esex M, Lee T-H (1990) Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses 6: 1265–1271

    PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: moleuclar analysis reveals a labile, latent viral structure. Cell 61: 213–222

    Article  PubMed  CAS  Google Scholar 

  • Zack JA, Haislip AM, Krogstad P, Chen ISY (1992) Incompletely reverse- transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retrovial life cycle. J Virol 66: 1717–1725

    PubMed  CAS  Google Scholar 

  • Zhao L-J, Mukherjee S, Narayan O (1994) Biochemical mechanism of HIV-1 vpr function. Specific interaction with a cellular protein. Chem 289: 18877–15832

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Levy, D.N., Refaeli, Y., Weiner, D.B. (1995). The vpr Regulatory Gene of HIV. In: Chen, I.S.Y., Koprowski, H., Srinivasan, A., Vogt, P.K. (eds) Transacting Functions of Human Retroviruses. Current Topics in Microbiology and Immunology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78929-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78929-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78931-1

  • Online ISBN: 978-3-642-78929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics