The vpr Regulatory Gene of HIV

  • D. N. Levy
  • Y. Refaeli
  • D. B. Weiner
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 193)


Virus replication is the result of a series of two-way communications between the viral parasite and its host. Since viruses are essentially inert objects in the absence of a host cell, all aspects of their natural history can be defined in terms of these interactions. For example, whether or not a cell is permissive to infection and subsequent virus replication, or whether non-productive infection results, is determined by the expression of specific cellular factors which are necessary for each stage in the viral life cycle. In turn, the virus may modulate or enhance the expression of these factors to suit its particular needs. Viral tropism is then similarly determined through these interactions, since the presence of the viral receptor molecule on a cell is only the first requisite for productive infection. The pathogenicity of a virus is also clearly the result of these interactions.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Simian Immunodeficiency Virus Productive Infection TE671 Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguanno S, Bouche M, Adamo S, Molinaro M (1990) 12-O-Tetradecanoylphorbol-13-acetate-induced differentiation of a human rhabdomyosarcoma cell Line. Cancer Res 50: 3377–3382PubMedGoogle Scholar
  2. Arrigo SJ, Chen ISY (1991) Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev 5: 808–819PubMedCrossRefGoogle Scholar
  3. Balliet JW, Kolson DL, Eiger G, Kim FM, McGann KA, Srinivasan A, Collman R (1994) Distinct effect in primary macrophages and lymphocytes of the human immunodeficiency virus typw 1 accessory genes vpr, vpu, and nef: mutational analysis of a primary isolate. Virology 200: 623–631PubMedCrossRefGoogle Scholar
  4. Balotta C, Lusso P, Crowley R, Gallo RC, Franchini G (1993) Antisense phosphorothioate oligodeoxy-nucleotides targeted to the vpr gene inhibit human immunodeficiency virus type 1 replication in primary human macrophages. J Virol 67: 4409–4414PubMedGoogle Scholar
  5. Barre-Sinoussi F, Cherman JC, Rey F, Nugeyre MT, Chameret S, Gruest J, Dauguet C, Axlerblin C, Brun-Ve’zinet F, Rauzioux C, Rozenbaum W and Montagnier L (1984) Isolation of a T-lymphotropic retro-virus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220: 868–871CrossRefGoogle Scholar
  6. Bednarik DP, Folks TM (1992) Mechanisms of HIV-1 latency. AIDS 6: 3–16PubMedCrossRefGoogle Scholar
  7. Bednarik DRP, Mosca JD, Raj NBK (1987) Methylation as a modulator of expression of human immunodeficiency virus. J Virol 61: 1253–1257PubMedGoogle Scholar
  8. Bukrinsky Ml, Stanwick TL, Dempsey MP, Stevenson M (1991) Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254: 423–427PubMedCrossRefGoogle Scholar
  9. Butera ST, Perez VL, Wu B-Y, Nabel GJ, Folks TM (1991) Oscillation of the human immunodeficiency virus surface receptor is regulated by the state of viral activation in a CD4+ cell model of chronic infection. J Virol 65: 4645–4653PubMedGoogle Scholar
  10. Clapham PR (1991) Human immunodeficiency virus infectin of non-haematopoietic cells: the role of CD4 independent entry. Med Virol 1: 51–58CrossRefGoogle Scholar
  11. Clapham PR, Weber JN, Whitby D, Mclntosh K, Gagleish AG, Maddon PJ, Deen KC, Sweet RW, Weiss RA (1989) Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T-cells and monocytes but not for brain and muscle cells. Nature 337: 368–370PubMedCrossRefGoogle Scholar
  12. Clapham PR, Blanc D, Weiss RA (1991) Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus. Virology 181: 703–715PubMedCrossRefGoogle Scholar
  13. Cohen EA, Dehni G, Sodroski JG, Haseltine WH (1990a) Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol 64: 3097–3099PubMedGoogle Scholar
  14. Cohen EA, Terwilliger EF, Jalinoos Y, Proulx J, Sodroski JG, Haseltine WH (1990b) Identification of HIV-1 vpr product and function. J AIDS 3: 11–18Google Scholar
  15. Cullen BR (1991) Human immunodeficiency virus as a prototypic complex retrovirus. J Virol 65: 1053–1056PubMedGoogle Scholar
  16. Dahl KE, Burrage T, Jones F, Miller G (1990) Persistent nonproductive infection of Epstein-Barr virustransformed human B lymphocytes by human immunodeficiency virus type 1. J Virol 64: 1771–1783PubMedGoogle Scholar
  17. Daniel MD, Desrosiers RC (1989) Use of simian immunodeficiency virus for evaluation of AIDS vaccine strategies. AIDS 3: S131–S133PubMedCrossRefGoogle Scholar
  18. Dedera D, Hu W, Vander Heyden N, Ratner L (1989) Viral protein R of human immunodeficiency virus types 1 and 2 is dispensible for replication and cytopathogenicity in lymphoid cells. J Virol 63: 3205–3208PubMedGoogle Scholar
  19. Embretson J, Zupancic M, Beneke J, Till M, Wolinsky S, Ribas JL, Burke A, Haase AT (1993a) Analysis of human immunodeficiency virus-infected tissues by amplification of in situ hybridization reveals latent and permissive infections at single-cell resolution. Proc Natl Acad Sci USA 90: 357–361PubMedCrossRefGoogle Scholar
  20. Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner RK, Haase AT (1993b) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubatin period of AIDS. Nature (Lond) 362: 359–362CrossRefGoogle Scholar
  21. Felber BK, Pavlakis GN (1993) Molecular biology of HIV-1: positive and negative regulatory elements important for virus expression. AIDS 7: S51–S62PubMedCrossRefGoogle Scholar
  22. Felix CA, Chavez Kappel C, Mitsudomi T, Nau MM, Tsokos M, Crouch GD, Nisen PD, Winick NJ, Helman LJ (1992) Frequency and diversity of p53 mutations in childhood rhabdomyosarcoma. Cancer Res 52: 2243–2247PubMedGoogle Scholar
  23. Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS (1987) Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science 238: 800–802PubMedCrossRefGoogle Scholar
  24. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS (1989) Tumor necrosis factor α induces expresssion of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 86: 2365–2368PubMedCrossRefGoogle Scholar
  25. Francini G, Rusche JR, O’Keeffe TJ, Wong-Staal F (1988) The human immunodeficiency virus type 2 (HIV-2) contains a novel gene encoding a 16 kD protein associated with mature virions. AIDS Res Hum Retroviruses 4: 243–249CrossRefGoogle Scholar
  26. Fukasawa M, Miura T, Hasegawa A, Morikawa S, Tsujimoto H, Miki K, Kitamura T, Hayami M (1988) Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature 333: 457–461PubMedCrossRefGoogle Scholar
  27. Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B, White G, Foster P, Markham PA (1984) Human T-lymphotropic retrovirus, HTLV-III, isolated from AIDS patients and donors at risk for AIDS. Science 224: 500–503PubMedCrossRefGoogle Scholar
  28. Garrett ED, Tiley LS, Cullen BR (1991) Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. J Virol 65: 1653–1657PubMedGoogle Scholar
  29. Gazzolo L, Macé K (1990) Regulation of HIV-1 replication in promonocytic U937 cells. Res Virol 141: 259–265PubMedCrossRefGoogle Scholar
  30. Gendelman HE, Phelps W, Feigenbaum L, Ostrove JM, Adachi A, Howley PM, Khoury G, Ginsberg HS, Martin MA (1986) Transactivation of the human immunodeficiency virus long terminal repeat sequences by DNA viruses. Proc Natl Acad Sci USA 83: 9759–9763.PubMedCrossRefGoogle Scholar
  31. Gras-Masse H, Ameisen JC, Boutillon C, Gesquiere JC, Vian S, Neyrinck JL, Drobecq H, Capron A, Tartar A (1990) A synthetic protein corresponding to the entire vpr gene product from the human immunodeficiency virus HIV-1 is recognized by antibodies from HIV-infected patients. Int J Pept Protein Res 36: 219–26PubMedCrossRefGoogle Scholar
  32. Haggerty S, Dempsey MP, Bukrinsky MI, Guo L, Stevenson M (1991) Posttranslational modifications within the HIV-1 envelope glycoprotein which restrict virus assembly and CD4-dependent infection. AIDS Res Hum Retroviruses 7: 501–510PubMedCrossRefGoogle Scholar
  33. Hattori N, Michaels F, Fargnoli K, Marcon L, Gallo RC, Franchini G (1990) The human immunodeficiency virus type 2 vpr gene is essential for productive infection of human macrophages. Proc Natl Acad Sci USA 87: 8080–8084PubMedCrossRefGoogle Scholar
  34. Heinzinger HE, Bukrinsky Ml, Haggerty SA, Ragland AM, Kewalramani V, Lee MA, Gendelman HE, Ratner L, Stevenson M, Emerman M (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nodividing cells. Proc Natl Acad USA 91: 7311–7315CrossRefGoogle Scholar
  35. Hiti AL, Bogenmann E, Gonzales F, Jones PA (1989) Expression of the MyoD1 muscle determination gene defines differentiation capability but not tumorigenicity of human rhabdomyosarcomas. Mol Cell Biol 9: 4722–4730PubMedGoogle Scholar
  36. Kappes JC, Morrow CD, Lee SW, Jameson BA, Kent SB, Hood LE, Shaw GM, Hahn BH (1988) Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC. J Virol 62: 3501–3505PubMedGoogle Scholar
  37. Kestler HW III, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65: 651–662PubMedCrossRefGoogle Scholar
  38. Kitano K, Baldwin GC, Raines MA, Golde DW (1990) Differentiating agents facilitate infection of myeloid leukemia cell lines by monocytotropic HIV-1 strains. Blood 76: 1980–1988PubMedGoogle Scholar
  39. Lang SM, Weeger M, Stahl-Henning C, Coulibaly C, Hunsmann G, Müller J, Müller-Hermelink H, Fuchs D, Wachter H, Daniel MM, Desrosiers RC, Fleckenstein B (1993) Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67: 902–912PubMedGoogle Scholar
  40. Lavallee C, Yao XJ, Ladha A, Gottlinger H, Haseltine WA, Cohen EA (1994) Requirement of the Pr55gag precursor for incorporation of the Vpr product into human immunodeficiency virus type 1 particles. J Virol 68: 1926–1934PubMedGoogle Scholar
  41. Levy DN (1994) Studies of HIV-1 Vpr PhD thesis, University of Pennsylvania, Philadelphia, PAGoogle Scholar
  42. Levy DN, Weiner DB (1993) HIV regulatory gene function analysis in a rhabdomyosarcoma cell line. In: Ginsberb HS, Brown F, Chanock RM, Lerner RA Vaccines93: modern approaches to new vaccines including the prevention of AIDS. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  43. Levy DN, Fernandes LS, Williams WV, Weiner DB (1993) Induction of cell differentiation by human immunodeficiency virus 1 vpr. Cell 72: 541–550PubMedCrossRefGoogle Scholar
  44. Levy DN, Refaeli Y, MacGreggor RR, Weiner DB (1994) Serum vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 91: 10873–10877PubMedCrossRefGoogle Scholar
  45. Levy DN, Refaeli Y, Weiner DB (1995a) Extracellular vpr protein increases cellular permissiveness to HIV replication and reactivates virus from latency. J Virol (in press)Google Scholar
  46. Levy DN, Refaeli Y, Weiner DB (1995b) (submitted for publication)Google Scholar
  47. Levy JA (1993) Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 57: 183–289PubMedGoogle Scholar
  48. Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM, Oshiro LS (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225: 840–842PubMedCrossRefGoogle Scholar
  49. Lu Y-L, Spearman P, Ratner L (1993) Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions. J Virol 67: 6542–6550PubMedGoogle Scholar
  50. Marck C (1988) “DNA Strider”: a “C” program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16: 1829–1836PubMedCrossRefGoogle Scholar
  51. McCune JM (1991) HIV-1 the infectivity process in vivo. Cell 64: 351–363PubMedCrossRefGoogle Scholar
  52. Meylan PRA, Spina CA, Richman DD, Kombluth RS (1993) In vitro differentiation of monocytoid THP-1 cells affects their permissiveness for HIV strains: a model for studying the cellular basis of HIV differential tropism. Virology 193: 256–267PubMedCrossRefGoogle Scholar
  53. Mikovits JA, Raziuddin Gonda M, Ruta M, Lohrey NC, Kung H-F, Ruscetti FW (1990) Negative regulation of human immunodeficiency virus replication in monocytes. J Exp Med 171: 1705–1720PubMedCrossRefGoogle Scholar
  54. Mikovits JA, Lohrey NC, Schulof R, Courtlëss J, Ruscetti FW (1992) Activation of infectious virus from latent human immunodeficiency virus infection of monocytes in vivo. J Clin Invest 90: 1486–1491PubMedCrossRefGoogle Scholar
  55. Mosca JD, Bednarik DP, Raj NB, Rosen CA, Sodroski JG, Haseltine WA, Pitha PM (1987) herpes simplex virus type 1 can reactivate transcription of latent human immunodeficiency virus. Nature (Lond): 325: 67–70CrossRefGoogle Scholar
  56. Myers G, Korber B, Berzofsky JA, Smith RF, Pavlakis GN (1991) Hum Retroviruses AIDS III: 6–22Google Scholar
  57. Ogawa K, Shibata R, Kiyomasu T, Higuchi I, Kishida Y, Ishimoto A, Adachi A (1989) Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol 63: 4110–4114PubMedGoogle Scholar
  58. Oldstone MBA (1991) Molecular anatomy of viral persistence. J Virol 65: 6381–6386PubMedGoogle Scholar
  59. Pantaleo G, Graziosi C, Butini L, Pizzo PA, Schnittman SM, Kotler DP, Fauci AS (1991) Lymphoid organs function as major reserviors for human immunodeficiency virus. Proc Natl Acad Sci USA 88: 9838–9842PubMedCrossRefGoogle Scholar
  60. Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS (1993) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature (Lond) 362: 355–358CrossRefGoogle Scholar
  61. Pautrat G, Suzan M, Salaun D, Corbreau P, Allasia C, Morel G, Filippi P (1990) Human immunodeficiency virus type 1 infection of U937 cells promotes cell differentiation and a new pathway of viral assembly. Virology 179: 749–758PubMedCrossRefGoogle Scholar
  62. Pavlakis GN, Schwartz S, D’Agostino DM, Felber BK (1992) Structure, splicing, and regulation of expression of HIV-1, a model for the general organization of lentiviruses and other complex retroviruses. In: AIDS Research Reviews, Vol. 2. Eds.: W.C. Koff, F. Wong-Staal, R.C. Kennedy, Marcel Dekker, Inc. N.Y., N.Y.Google Scholar
  63. Paxton W, Connor Rl, Landau NR (1993) Incorporation of vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. J Virol 67: 7229–7237PubMedGoogle Scholar
  64. Perez VL, Rowe T, Justement JS, Butera ST, June CH, Folks TM (1991) An HIV-1 infected T cell clone defective in IL-2 production and Ca2+ mobilization after CD3 stimulation. J Immunol 147: 3145–3148PubMedGoogle Scholar
  65. Perno C-F, Yarchoan R, Cooney DA, Hartman NR, Webb DSA, Hao Z, Mitsuya H, Johns DG, Broder S (1989) Replication of human immunodificiency virus in monocytes. J Exp Med 169: 933–951PubMedCrossRefGoogle Scholar
  66. Pomerantz RJ, Trono D, Feinberg MB, Baltimore D (1990) Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61: 1271–1276PubMedCrossRefGoogle Scholar
  67. Refaeli Y, Levy DN, Weiner DB (1995) (submitted for publication)Google Scholar
  68. Reiss P, Lange JM, de RA, de WF, Dekker J, Danner SA, Debouck C, Goudsmit J (1990) Antibody response to viral proteins U (vpu) and R(vpr) in HIV-1-infected individuals. J Acquir Immun Defic Syndr 3: 115–22Google Scholar
  69. Rich EA, Chen ISY, Zack JA, Leonard ML, O’Brien WA (1992) Increased susceptibility of differentiated mononuclear phagocytes to productive infection with human immunodeficiency virus-1 (HIV-1). J Clin Invest 89: 176–183PubMedCrossRefGoogle Scholar
  70. Roulston A, D’Addario M, Boulerice F, Caplan S, Wainberg MA, Hiscott J (1992) Induction of monocytic differentiation and NF-KB-like activities by human immunodeficiency virus 1 infection of myelomonoblastic cells. J Exp Med 175: 751–763PubMedCrossRefGoogle Scholar
  71. Sato A, Igarashi H, Adachi A, Hayami M (1990) Identification and localization of vpr gene product of Human Immunodeficiency Virus Type 1. Virus Genes 4: 303–312PubMedCrossRefGoogle Scholar
  72. Schnittman SM, Psallidopoulos MC, Clifford Lane H, Thompson L, Baseler M, Massari F, Fox CH, Salzman NP, Fauci AS (1989) The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 245: 305–308PubMedCrossRefGoogle Scholar
  73. Schuitemaker H, Kootstra NA, Koppelman MHGM, Bruisten SM, Huisman HG, Tersmette M, Miedema F (1992) Proliferation-dependent HIV-1 infection of monocytes occurs during differentiation into macrophages. J Clin Invest 89: 1154–1160PubMedCrossRefGoogle Scholar
  74. Schüpbach J (1989) Human retrovirology. Facts and concepts. Springer, Berlin Heidelberg New York (Current Topics in Microbiology and immunology, vol 142)Google Scholar
  75. Shibata R, Miura T Hayami M, Ogawa K, Sakai H, Kiyomasu T, Ishimoto A, Adachi A (1990) Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genome in relation to HIV-1 and simian immunodeficiency virus SIVAGM. J Virol 64: 742–747PubMedGoogle Scholar
  76. Siegel HN, Lukas RJ (1988) Morphological and Biochemical Differentiation of the Human Medulloblastoma Cell Line TE671. Dev Brain Res 44: 269–280CrossRefGoogle Scholar
  77. Silvennolnen O, Hure M (1990) Growth inhibition caused by serum depletion induces differentiation, interleukin 1 receptor expression and interleukin 1 responsiveness in the HL-60 promyelocytic leukemia cell line. Biochem Biophys Res Commun 168: 959–965CrossRefGoogle Scholar
  78. Srinivasan A, Goldsmith CS, York D, Anand R, Luciw P, Schochetman G, Palmer E, Bohan C (1988) Studies on human immunodeficiency virus-induced cytopathic effects: use of human rhabdomyosarcoma (RD) cells. Arch Virol 99: 21–30PubMedCrossRefGoogle Scholar
  79. Stratton MR, Darling J, Pilkington GJ, Lantos PL, Reeves BR, Cooper CS (1989) Characterization of the human cell line TE671. Carcinogenesis 10: 899–905PubMedGoogle Scholar
  80. Tateno M, Gonzalez-Scarano F, Levy JA (1989) Human immunodeficiency virus can infect CD4-negative human fibroblastoid cells. Proc Natl Acad Sci USA, 86: 4287–4290CrossRefGoogle Scholar
  81. Terwilliger EF (1992) The accessory gene functions of the primate immunity viruses. In: Koff WC, Wong-Staal F, Kennedy RC (eds) AIDS Research Reviews vol 2. Marcel Dekker, New YorkGoogle Scholar
  82. Tristem M, Marshal C, Karpas A, Hill F (1992) Evolution of the primate lentiviruses: evidence from vpx and vpr. EMBO J 11: 3405–3412PubMedGoogle Scholar
  83. Tristem M, Marshal C, Karpas A, Petrik J, Hill F (1990) Origin of vpx in lentiviruses. [Letter]. Nature (Lond) 347: 341–342CrossRefGoogle Scholar
  84. Turpin JA, Vargo M, Meltzer MS (1992) Enhanced HIV-1 replication in retinoid-treated monocytes: retinoid effects mediated through mechanisms related to cell differentiation and to a direct transcriptional action on viral gene expression. J Immunol 148: 2539–2546PubMedGoogle Scholar
  85. Valentin A, Von Gegerfelt A, Matsuda S, Nilsson K, Åsjö B (1991) In vitro maturation of mononuclear phagocytes and susceptibility to HIV-1 infection. J AIDS 4: 751–759Google Scholar
  86. Weiss RA, Clapham PR, McClure MO, McKeating JA, McKnight A, Dalgleish AG, Sattentau QJ, Weber JN (1988) Human immunodeficiency viruses: Neutralization and receptors. J AIDS 1: 536–541Google Scholar
  87. Werner A, Winskowsky G, Cichutek K, Norley SG, Kurth R (1990) Productive infection of both CD4+ and CD4- human cell lines with HIV-1, HIV-2 and SIVAGM. AIDS 6: 537–544CrossRefGoogle Scholar
  88. Westervelt P, Henkel T, Trowbridge DB, Orenstein J, Heuser J, Gendelman HE, Ratner L (1992) Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 66: 3925–3931PubMedGoogle Scholar
  89. Winslow BJ, Pomerantz RJ, Bagasra O, Trono D (1993) HIV-1 latency due to the site of proviral integration. Virology 196: 849–854PubMedCrossRefGoogle Scholar
  90. Wong-Staal F, Chanda PK, Ghrayeb J (1987) Human immunodeficiency virus: the eighth gene. AIDS Res Hum Retroviruses 3: 33–39PubMedCrossRefGoogle Scholar
  91. Yu XF, Ito S, Essex M, Lee TH (1988) A naturally immunogenic virion-associated protein specific for HIV-2 and SIV. Nature 335: 262–265PubMedCrossRefGoogle Scholar
  92. Yu XF, Yu QC, Essex M, Lee TH (1991) The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage. J Virol 65: 5088–5091PubMedGoogle Scholar
  93. Yuan X, Matsuda Z, Matsuda M, Esex M, Lee T-H (1990) Human immunodeficiency virus vpr gene encodes a virion-associated protein. AIDS Res Hum Retroviruses 6: 1265–1271PubMedGoogle Scholar
  94. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: moleuclar analysis reveals a labile, latent viral structure. Cell 61: 213–222PubMedCrossRefGoogle Scholar
  95. Zack JA, Haislip AM, Krogstad P, Chen ISY (1992) Incompletely reverse- transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retrovial life cycle. J Virol 66: 1717–1725PubMedGoogle Scholar
  96. Zhao L-J, Mukherjee S, Narayan O (1994) Biochemical mechanism of HIV-1 vpr function. Specific interaction with a cellular protein. Chem 289: 18877–15832Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • D. N. Levy
    • 2
  • Y. Refaeli
    • 1
    • 3
  • D. B. Weiner
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of Molecular Genetics B404Dana-Forber Cancer InstituteBostonUSA
  3. 3.Department of ImmunologySchool of Medicine, Harvard UniversityBostonUSA

Personalised recommendations