Skip to main content

Altered Responsiveness of Vascular Smooth Muscle to Drugs in Diabetes

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 111))

Abstract

Cardiovascular alterations are much more frequent and much more severe in diabetic than in metabolically healthy populations (Langsh et al. 1970). This observation has been made on the basis of the numerous manifestations of vascular diabetic defects throughout the body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal DK, McNeill JH (1986) Effect of prostaglandins E1 and I2 in vascular smooth muscle of alloxan-diabetic rabbits. Fed Proc 45:424

    Google Scholar 

  • Agrawal DK, Bhimji S, McNeil JH (1987) Effect of chronic experimental diabetes on vascular smooth muscle function in rabbit carotid artery. J Cardiovasc Pharmacol 9:584–593

    Article  PubMed  CAS  Google Scholar 

  • Bohlen HG, Niggl BA (1979) Arteriolar anatomical and functional abnormalities in juvenile mice with genetic or streptozotocin-induced diabetes mellitus. Circ Res 45:390–396

    PubMed  CAS  Google Scholar 

  • Bohlen HG, Niggl BA (1980) Early arteriolar disturbances following streptozotocin-induced diabetes mellitus in adult mice. Microvasc Res 20:19–29

    Article  PubMed  CAS  Google Scholar 

  • Chilian WM (1990) Adrenergic vasomotion in the coronary microcirculation. Basic Res Cardiol 85 [Suppl 1]:111–120

    PubMed  Google Scholar 

  • Cohen RA, Zitnay KM (1986) Augmented adrenergic responses of diabetic carotid arteries are dependent on the endothelium. (Abstr). Circulation 74 [Suppl 2]: 413

    Google Scholar 

  • Colwrll JH, Chambers A, Laimins M (1975) Inhibition of labile aggregation- stimulating substance (LASS) and platelet aggregation in diabetes mellitus. Diabetes 24:684–687

    Article  Google Scholar 

  • Crall FM, Roberts WC (1978) The extramural and intramural coronary arteries in juvenile diabetes mellitus. Am J Med 64:221–230

    Article  PubMed  Google Scholar 

  • Creager MA, Liand CS, Coffman JD (1985) Beta-adrenergic-mediated vasodilator response to insulin in the human forearm. J Pharmacol Exp Ther 235:709–714

    PubMed  CAS  Google Scholar 

  • Dandona P, James IM, Newbury RA, Woollard ML, Beckett AG (1978) Cerebral blood flow in diabetes mellitus: evidence of abnormal cerebrovascular reactivity. Br Med J 2:325–326

    Article  PubMed  CAS  Google Scholar 

  • DeDeckere EAM, Hoor TF (1980) PGF stimulates release of PGE2 and PGI2 in the isolated perfused rat heart. Adv Prostaglandin Thromboxane Res 7:658–665

    Google Scholar 

  • Drash AL (1976) Hyperlipidemia and the control of diabetes mellitus. Am J Dis Child 130:1057–1058

    PubMed  CAS  Google Scholar 

  • El-Hage AN, Herman EH, Jordan AW, Ferrans VJ (1985) Influence of the diabetic state on isoproterenol-induced cardiac necrosis. J Mol Cell Cardiol 17:361–369

    Article  PubMed  CAS  Google Scholar 

  • Ewald U, Tuemo T, Rooth G (1981) Early reduction of vascular reactivity in diabetic children detected by transcutaneous oxygen electrode. Lancet 8213: 1287–1288

    Article  Google Scholar 

  • Fluckiger W, Perrin IV, Rossi GL (1984) Morphometric studies on retinal microangiopathy and myocardiopathy in hypertensive rats (SHR) with induced diabetes. Virchows Arch [B] 47:79–94

    Article  CAS  Google Scholar 

  • Fortes ZB, Leme JG, Scivoletto R (1983) Vascular reactivity in diabetes mellitus: role of the endothelial cell. Br J Pharmacol 79:771–781

    PubMed  CAS  Google Scholar 

  • Friedman JJ (1989) Vascular sensitivity and reactivity to norepinephrine in diabetes mellitus. Am J Physiol 256:H1134–H1138

    PubMed  CAS  Google Scholar 

  • Garcia MJ, McNamara PM, Gordon T, Kannell WB (1969) Morbidity and mortality in diabetics in the Framingham population. Diabetes 23:537–546

    Google Scholar 

  • Gebremedhin D, Koltai MZ, Pogátsa G, Magyar K, Hadházy P (1988) Influence of experimental diabetes on the mechanical responses of canine coronary arteries: role of endothelium. Cardiovasc Res 22:537–544

    Article  PubMed  CAS  Google Scholar 

  • Gudbjarnason S, El-Hage AN, Whitehurst VE, Simental F, Balázs T (1987) Reduced arachidonic acid levels in major phospholipids of heart muscle in the diabetic rat. J Mol Cell Cardiol 19:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJG, Osterby R, Lundbeak K (1978) The basement membrane controversy. Diabetologia 15:361–363

    Article  PubMed  CAS  Google Scholar 

  • Halushka PV, Mayfield R, Wohltmann HJ, Rogers RC, Goldberg AK, McCoy SA, Loadholt CB, Colwell JA (1981) Increased platelet arachidonic acid metabolism in diabetes mellitus. Diabetes 30 [Suppl 2]:44–48

    PubMed  CAS  Google Scholar 

  • Hamby RI, Sherman L, Mehta J, Aintablian A (1976) Reappraisal of the role of the diabetic state in coronary artery disease. Chest 70:251–257

    Article  Google Scholar 

  • Henriksen O, Kastrup J, Parving HH, Lassen NA (1984) Loss of autoregulation of blood flow in subcutaneous tissue in juvenile diabetes. J Cardiovasc Pharmacol 6:S666–S670

    Article  PubMed  Google Scholar 

  • Jackson CV, Carrier GO (1983) Influence of short-term experimental diabetes on blood pressure and heart rate in response to norepinephrine and angiotensin II in the conscious rat. J Cardiovasc Pharmacol 5:260–265

    Article  PubMed  CAS  Google Scholar 

  • Jeremy JY, Thompson CS, Mikhailidis DP, Dandona P (1985) Experimental diabetes mellitus inhibits prostacyclin synthesis by the rat penis: pathological implications. Diabetologia 28:365–368

    PubMed  CAS  Google Scholar 

  • Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34

    Article  PubMed  CAS  Google Scholar 

  • Kaski JC, Maseri A, Vejar M, Crea F, Hackett D (1989) Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. J Am Coll Cardiol 14:1456–1463

    Article  PubMed  CAS  Google Scholar 

  • Kawano M, Kanzaki T, Koshikawa T, Morisaki N, Saito Y, Yoshida SH (1990) Pathologic phenotype of aortic smooth muscle cell causes diabetic macroangiopathy (Abstr)? Arteriosclerosis 10:841a

    Google Scholar 

  • Kobbah M, Ewald U, Tuvemo T (1985) Vascular reactivity during the first year of diabetes in children. Acta Paediatr Scand Suppl 320:56–63

    Article  PubMed  CAS  Google Scholar 

  • Koltai MZ, Pogátsa G (1985) Die Interaktion der Prostaglandinen und Adenosin in der Regulation der Koronardurchblutung (Abstr). Z Kardiol 74 [Suppl 5]: 911

    Google Scholar 

  • Koltai MZ, Jermendy G, Kiss V, Wagner M, Pogâtsa G (1984) The effect of sympathetic stimulation and adenosine on coronary circulation and heart function in diabetes mellitus. Acta Physiol Hung 63:119–125

    PubMed  CAS  Google Scholar 

  • Koltai MZ, Wagner M, Pogátsa G (1983) Altered hyperemic response of the coronary arterial bed in alloxan-diabetes. Experientia 39:738–740

    Article  PubMed  CAS  Google Scholar 

  • Koltai MZ, Hadházy P, Malomvölgyi B, Pogátsa G (1985a) The role of prostaglandins in the altered coronary reactivity of alloxan-diabetic dogs (Abstr). G Arteriosclerosi 1 [Suppl 1 ]:119

    Google Scholar 

  • Koltai MZ, Hadházy P, Pogátsa G (1985b) Effects of prostaglandins on coronary arteries (Abstr). J Mol Cell Cardiol 17 [Suppl 3]:120

    Google Scholar 

  • Koltai MZ, Hadházy P, Malomvölgyi B, Kiss V, Pogátsa G (1986a) Effect of prostacyclin on the coronary, femoral and coeliac arterial bed in diabetes mellitus. Adv Pharmacol Res Pract 3:377–382

    CAS  Google Scholar 

  • Koltai MZ, Wagner M, Balogh I, Kiss V, Köszeghy A, Pogátsa G (1986b) Effect of acute hypoxia on cardiac function in alloxan-diabetic dogs. Basic Res Cardiol 81:92–100

    Article  PubMed  CAS  Google Scholar 

  • Koltai MZ, Kösen P, Hadházy P, Ballagi-Pordány G, Köszeghy A, Pogátsa G (1988a) Effects of hypoxia and adrenergic stimulation induced alterations in PGI2 synthesis by diabetic coronary arteries. J Diabetes Complic 1:5–7

    Google Scholar 

  • Koltai MZ, Rösen P, Hadházy P, Ballagi-Pordány G, Köszeghy A, Pogátsa G (1988b) Relationship between vascular adrenergic receptors and prostaglandin biosyntheses in canine diabetic coronary arteries. Diabetologia 31:681–686

    Article  PubMed  CAS  Google Scholar 

  • Koltai MZ, Rösen P, Hadházy P, Ballagi-Pordány G. Aranyi Z, Pogátsa G (1988c) Hypoxia-induced alterations of prostaglandin synthesis mediated by α-adrenoceptors in canine coronary arteries (Abstr). J Mol Cell Cardiol 20 [Suppl 5]:611

    Google Scholar 

  • Koltai MZ, Rösen P, Ballagi-Pordány G, Hadházy P, Pogátsa G (1990) Increased vasoconstrictor response to norepinephrine in femoral vascular bed of diabetic dogs. Is thromboxane A2 involved? Cardiovasc Res 24:707–710

    Article  PubMed  CAS  Google Scholar 

  • Koltai MZ, Rösen P, Hadházy P, Ballagi-Pordány G, Aranyi Z, Pogátsa G (1994) The role of vascular adrenergic mechanism in the haemodynamic and prostacyclin stimulating effects of angiotensin in diabetic dogs. Circ Res (in press)

    Google Scholar 

  • Kubota I, Fukuhara T, Kinoshita M (1990) Permeability of small coronary arteries and myocardial injury in hypertensive diabetic rats. Int J Cardiol 29:349–355

    Article  PubMed  CAS  Google Scholar 

  • Lambert CR, Pepine CJ (1990) Coronary artery spasm: American view. Coronary Artery Dis 1:654–659

    Article  Google Scholar 

  • Langsh HG, Nowak W, Mohnike A (1970) Diabetes mellitus: 10. Makroangiopathie und Neuropathie bei Diabetes mellitus. Z Arztl Fortbild 64:867–871

    Google Scholar 

  • Longhurst PA, Head RJ (1985) Responses of the isolated perfused mesenteric vasculature from diabetic rats: the significance of appropriate control tissues. J Pharmacol Exp Ther 235:45–49

    PubMed  CAS  Google Scholar 

  • Lorini R, Chirico G, Larizza D, Cortona L, Rondini G, Severi F (1987) Vascular reactivity in diabetic children. Acta Paediatr Scand 76:151–152

    Article  PubMed  CAS  Google Scholar 

  • Lucas PD, Foy JM (1977) Effects of experimental diabetes and genetic obesity on regional blood flow in the rat. Diabetes 26:786–792

    Article  PubMed  CAS  Google Scholar 

  • Lüscher TF (1988a) Atherosclerosis: vascular responsiveness of atherosclerotic blood vessels. In: Lüscher TF (ed) Endothelial vasoactive substances and cardiovascular disease. Karger, Basel, pp 83–85

    Google Scholar 

  • Lüscher TF (1988b) Diabetic vascular disease. In: Lüscher TF (ed) Endothelial vasoactive substances and cardiovascular disease. Karger, Basel, p 111

    Google Scholar 

  • McNeill JH, Vadlamudi RVSV (1982) Effects of acute and chronic experimental diabetes on rat cardiac cyclic AMP and phosphorylase-A levels. Fed Proc 41:1358

    Google Scholar 

  • Morff RJ (1990) Microvascular reactivity to norepinephrine at different arteriolar levels and durations of streptozocin-induced diabetes. Diabetes 39:354–360

    Article  PubMed  CAS  Google Scholar 

  • Palik I, Koltai MZ, Wagner M, Kolonics I, Pogátsa G (1982a) Altered adrenergic responses of the coronary arterial bed in alloxan-diabetic dogs. Experientia 38:934–935

    Article  PubMed  CAS  Google Scholar 

  • Palik I, Koltai MZ, Wagner M, Kolonics I, Pogátsa G (1982b) Effects of coronary occlusion and norepinephrine on the myocardium of alloxen-diabetic dogs. Basic Res Cardiol 77:499–505

    Article  PubMed  CAS  Google Scholar 

  • Pfaffman MA, Dudley P, Prater A (1983) Relationship between untreated and insulin-treated diabetes and vascular relaxation. Arch Int Pharmacodyn Ther 266:131–143

    PubMed  CAS  Google Scholar 

  • Pieper GM, Gross GJ (1988) Oxygen free radicals abolish endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 255:H825–H833

    PubMed  CAS  Google Scholar 

  • Pieper GM, Gross GJ (1990) Differential response of postischemic diabetic myocardium to a thromboxane-mimetic. Eicosanoids 3:127–133

    PubMed  CAS  Google Scholar 

  • Pierce GN, Beamish RE, Dhalla NS (1988) Dysfunction of the cardiovascular system during diabetes: etiology of heart failure during diabetes: microvascular lesions in the heart. In: Pierce GN, Beamish RE, Dhalla NS (eds) Heart dysfunction in diabetes. CRC, Boca Raton, pp 63–67

    Google Scholar 

  • Pogátsa G (1980) Altered adrenergic response of the coronary and femoral arterial bed in alloxan-diabetic dogs. Adv Physiol Sci 27:213–226

    Google Scholar 

  • Pogátsa G (1991a) Effect of prostaglandins on the diabetic heart and coronary circulation. In: Nagano M, Dhalla NJ (eds) The diabetic heart. Raven, New York, pp 45–58

    Google Scholar 

  • Pogátsa G (1991b) The role of diabetic vascular alterations in the development of myocardial ischaemia. Bratisl Lek Listy 92:24–33

    PubMed  Google Scholar 

  • Pogátsa G, Koltai MZ (1983) Altered vascular reactivity of coronary and femoral arterial beds in alloxan-diabetic dogs. Proc Int Union Physiol Sci 15:493

    Google Scholar 

  • Pogátsa G, Koltai MZ, Hadházy P, Köszeghy A, Ballagi-Pordány G (1986a) Interaction between prostanoids and vasodilating endogenous agents in the altered reactivity in diabetes mellitus. Proc Int Union Physiol Sci 16:595

    Google Scholar 

  • Pogátsa G, Koltai MZ, Köszeghy A, Ballagi-Pordány G (1986b) Effects of insulin treatment and indomethacin on altered vascular reactivity in diabetes mellitus (Abstr). J Mol Cell Cardiol 18 [Suppl 2]:98

    Google Scholar 

  • Pogátsa G, Koltai MZ, Hadházy P, Köszeghy A, Ballagi-Pordány G (1988a) Insulin induced reversibility of altered responsiveness in femoral arterial bed of diabetic dogs. Diabetes Res 9:41–45

    PubMed  Google Scholar 

  • Pogátsa G, Koltai MZ, Ballagi-Pordány G (1988b) Effect of insulin treatment on the altered coronary vascular reactions in diabetes (Abstr). J Mol Cell Cardiol 20 [Suppl 5]:60

    Google Scholar 

  • Reibel DK, Roth DM, Lefer BL, Lefer AM (1983) Hyperreactivity of coronary vasculature in platelet-perfused hearts from diabetic rats. Am J Physiol 245: H640–H645

    PubMed  CAS  Google Scholar 

  • Rösen P, Senger W, Freuerstein J, Grote H, Reinauer H, Schrör K (1983) Influence of streptozotocin diabetes on myocardial lipids and prostaglandin release by the rat heart. Biochem Med 30:19–33

    Article  PubMed  Google Scholar 

  • Roth DM, Reibel DK, Lefer AM (1982) Altered vascular reactivity and prostacyclin generation in diabetic rats. Fed Proc 41:856

    Google Scholar 

  • Roth DM, Reibel DK, Lefer AM (1983) Vascular responsiveness and eicosanoid production in diabetic rats. Diabetologia 24:372–376

    Article  PubMed  CAS  Google Scholar 

  • Roth DM, Reibel DK, Lefer AM (1984) Altered coronary vascular responsiveness to leucotrienes in alloxan-diabetic rats. Circ Res 54:388–395

    PubMed  CAS  Google Scholar 

  • Rubányi G, Galvas P, DiSalvo J, Paul RJ (1986) Eicosanoid metabolism and β-adrenergic mechanisms in coronary arterial smooth muscle: potential compartmentation of cAMP. Am J Physiol 250:C406–C412

    PubMed  Google Scholar 

  • Rubier S, Sajadi MRM, Araoye MA, Holford FD (1978) Noninvasive estimation of myocardial performance in patents with diabetes. Effect of alcohol administration. Diabetes 27:127–134

    Google Scholar 

  • Sanderson JE, Brown DJ, Rivellese A, Kohner E (1978) Diabetic cardiomyopathy? An echocardiography study of young diabetics. Br Med J 1:404–407

    Article  PubMed  CAS  Google Scholar 

  • Sarubbi D, McGriff JC, Quilley J (1989) Renal vascular responses and eicosanoid release in diabetic rats. Am J Physiol 257:F762–F768

    PubMed  CAS  Google Scholar 

  • Scarborough NL, Carrier GO (1983) Increased α2-adrenoreceptor mediated vascular contraction in diabetic rats. J Auton Pharmacol 3:177–183

    Article  PubMed  CAS  Google Scholar 

  • Shaffer JE, Malik KU (1982) Activation of cardiac β-adrenoceptors enhances the output of prostaglandins in the rabbit heart. Fed Proc 41:1766

    Google Scholar 

  • Shah S (1980) Cardiomyopathy in diabetes mellitus. Angiology 31:502–504

    Article  Google Scholar 

  • Silberbauer K, Schernthaner G, Sizinger H, Clopath P, Piza-Katzer H, Winer M (1979) Diminished prostacyclin generation in human and experimentally induced (streptozotocin, alloxan) diabetes mellitus. Thromb Hemost 42:334

    Google Scholar 

  • Siperstein MD, Unger RH, Madison LL (1968) Studies of muscle capillary membrane in normal subjects, diabetic and prediabetic patients. J Clin Invest 47:1973–1999

    Article  PubMed  CAS  Google Scholar 

  • Stam H, Hülsmann WC (1977) Effect of fasting and streptozotocin-diabetes on the coronary flow in isolated rat hearts: a possible role of endogenous catecholamines and prostaglandins. Basic Res Cardiol 72:365–375

    Article  PubMed  CAS  Google Scholar 

  • Steiner G (1981) Diabetes and atherosclerosis. Diabetes 30 [Suppl 2]:1–7

    PubMed  CAS  Google Scholar 

  • Stuart MJ, Setty Y, Sunderji S, Boone S, Ganley C (1985) Abnormalities in vascular arachidonic acid metabolism in the infant of the diabetic mother (Abstr). Pediatr Res 19:321A

    Google Scholar 

  • Szentiványi M, Pék L (1973) Characteristic changes of vascular adrenergic reactions in diabetes mellitus. Nature [New Biol] 243:276–277

    Google Scholar 

  • Thom SA, Hughes AD, Martin G, Sever PS (1987) Endothelium-dependent relaxation in isolated human arteries and veins. Clin Sci 73:547–552

    PubMed  CAS  Google Scholar 

  • Tomiyama M, Minagawa A, Suzuki T, Munahata J, Iwasaki T, Tanaka K, Nakajima S, Takayama K (1976) Muscle metabolism during exercise. Jpn Diabetic Soc 19:130–140

    Google Scholar 

  • Turlapaty PDMV, Altura BM (1980) Magnesium ions and contractions of alloxan-diabetic vascular muscle. Artery 6:375–384

    Google Scholar 

  • Vogt W (1978) Role of phospholipase A2 in prostaglandin formation. Adv Prostaglandin Thromboxane Res 3:89–95

    PubMed  CAS  Google Scholar 

  • Waber S, Meister V, Rossi GL, Mordasini C, Reisen WF (1981) Studies on retinal microangiopathy and coronary macroangiopathy in rats with streptozotocin-induced diabetes. Virchows Arch [B] 37:1–10

    Article  CAS  Google Scholar 

  • White RE, Carrier GO (1988) Enhanced vascular-adrenergic neuroeffector system in diabetes: importance of calcium. Am J Physiol 255:H1036–H1042

    PubMed  CAS  Google Scholar 

  • Zhao JB, Mikata A, Azuma K (1990) Immunoglobulin deposits in diabetic microangiopathy. Observations in autopsy materials. Acta Pathol Jpn 40:729–734

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pogátsa, G. (1994). Altered Responsiveness of Vascular Smooth Muscle to Drugs in Diabetes. In: Szekeres, L., Papp, J.G. (eds) Pharmacology of Smooth Muscle. Handbook of Experimental Pharmacology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78920-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78920-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78922-9

  • Online ISBN: 978-3-642-78920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics