Altered Responsiveness of Vascular Smooth Muscle to Drugs in Diabetes

  • G. Pogátsa
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 111)

Abstract

Cardiovascular alterations are much more frequent and much more severe in diabetic than in metabolically healthy populations (Langsh et al. 1970). This observation has been made on the basis of the numerous manifestations of vascular diabetic defects throughout the body.

Keywords

Adenosine Carbon Monoxide Angiotensin Histamine Noradrenaline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal DK, McNeill JH (1986) Effect of prostaglandins E1 and I2 in vascular smooth muscle of alloxan-diabetic rabbits. Fed Proc 45:424Google Scholar
  2. Agrawal DK, Bhimji S, McNeil JH (1987) Effect of chronic experimental diabetes on vascular smooth muscle function in rabbit carotid artery. J Cardiovasc Pharmacol 9:584–593PubMedCrossRefGoogle Scholar
  3. Bohlen HG, Niggl BA (1979) Arteriolar anatomical and functional abnormalities in juvenile mice with genetic or streptozotocin-induced diabetes mellitus. Circ Res 45:390–396PubMedGoogle Scholar
  4. Bohlen HG, Niggl BA (1980) Early arteriolar disturbances following streptozotocin-induced diabetes mellitus in adult mice. Microvasc Res 20:19–29PubMedCrossRefGoogle Scholar
  5. Chilian WM (1990) Adrenergic vasomotion in the coronary microcirculation. Basic Res Cardiol 85 [Suppl 1]:111–120PubMedGoogle Scholar
  6. Cohen RA, Zitnay KM (1986) Augmented adrenergic responses of diabetic carotid arteries are dependent on the endothelium. (Abstr). Circulation 74 [Suppl 2]: 413Google Scholar
  7. Colwrll JH, Chambers A, Laimins M (1975) Inhibition of labile aggregation- stimulating substance (LASS) and platelet aggregation in diabetes mellitus. Diabetes 24:684–687CrossRefGoogle Scholar
  8. Crall FM, Roberts WC (1978) The extramural and intramural coronary arteries in juvenile diabetes mellitus. Am J Med 64:221–230PubMedCrossRefGoogle Scholar
  9. Creager MA, Liand CS, Coffman JD (1985) Beta-adrenergic-mediated vasodilator response to insulin in the human forearm. J Pharmacol Exp Ther 235:709–714PubMedGoogle Scholar
  10. Dandona P, James IM, Newbury RA, Woollard ML, Beckett AG (1978) Cerebral blood flow in diabetes mellitus: evidence of abnormal cerebrovascular reactivity. Br Med J 2:325–326PubMedCrossRefGoogle Scholar
  11. DeDeckere EAM, Hoor TF (1980) PGF stimulates release of PGE2 and PGI2 in the isolated perfused rat heart. Adv Prostaglandin Thromboxane Res 7:658–665Google Scholar
  12. Drash AL (1976) Hyperlipidemia and the control of diabetes mellitus. Am J Dis Child 130:1057–1058PubMedGoogle Scholar
  13. El-Hage AN, Herman EH, Jordan AW, Ferrans VJ (1985) Influence of the diabetic state on isoproterenol-induced cardiac necrosis. J Mol Cell Cardiol 17:361–369PubMedCrossRefGoogle Scholar
  14. Ewald U, Tuemo T, Rooth G (1981) Early reduction of vascular reactivity in diabetic children detected by transcutaneous oxygen electrode. Lancet 8213: 1287–1288CrossRefGoogle Scholar
  15. Fluckiger W, Perrin IV, Rossi GL (1984) Morphometric studies on retinal microangiopathy and myocardiopathy in hypertensive rats (SHR) with induced diabetes. Virchows Arch [B] 47:79–94CrossRefGoogle Scholar
  16. Fortes ZB, Leme JG, Scivoletto R (1983) Vascular reactivity in diabetes mellitus: role of the endothelial cell. Br J Pharmacol 79:771–781PubMedGoogle Scholar
  17. Friedman JJ (1989) Vascular sensitivity and reactivity to norepinephrine in diabetes mellitus. Am J Physiol 256:H1134–H1138PubMedGoogle Scholar
  18. Garcia MJ, McNamara PM, Gordon T, Kannell WB (1969) Morbidity and mortality in diabetics in the Framingham population. Diabetes 23:537–546Google Scholar
  19. Gebremedhin D, Koltai MZ, Pogátsa G, Magyar K, Hadházy P (1988) Influence of experimental diabetes on the mechanical responses of canine coronary arteries: role of endothelium. Cardiovasc Res 22:537–544PubMedCrossRefGoogle Scholar
  20. Gudbjarnason S, El-Hage AN, Whitehurst VE, Simental F, Balázs T (1987) Reduced arachidonic acid levels in major phospholipids of heart muscle in the diabetic rat. J Mol Cell Cardiol 19:1141–1146PubMedCrossRefGoogle Scholar
  21. Gundersen HJG, Osterby R, Lundbeak K (1978) The basement membrane controversy. Diabetologia 15:361–363PubMedCrossRefGoogle Scholar
  22. Halushka PV, Mayfield R, Wohltmann HJ, Rogers RC, Goldberg AK, McCoy SA, Loadholt CB, Colwell JA (1981) Increased platelet arachidonic acid metabolism in diabetes mellitus. Diabetes 30 [Suppl 2]:44–48PubMedGoogle Scholar
  23. Hamby RI, Sherman L, Mehta J, Aintablian A (1976) Reappraisal of the role of the diabetic state in coronary artery disease. Chest 70:251–257CrossRefGoogle Scholar
  24. Henriksen O, Kastrup J, Parving HH, Lassen NA (1984) Loss of autoregulation of blood flow in subcutaneous tissue in juvenile diabetes. J Cardiovasc Pharmacol 6:S666–S670PubMedCrossRefGoogle Scholar
  25. Jackson CV, Carrier GO (1983) Influence of short-term experimental diabetes on blood pressure and heart rate in response to norepinephrine and angiotensin II in the conscious rat. J Cardiovasc Pharmacol 5:260–265PubMedCrossRefGoogle Scholar
  26. Jeremy JY, Thompson CS, Mikhailidis DP, Dandona P (1985) Experimental diabetes mellitus inhibits prostacyclin synthesis by the rat penis: pathological implications. Diabetologia 28:365–368PubMedGoogle Scholar
  27. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34PubMedCrossRefGoogle Scholar
  28. Kaski JC, Maseri A, Vejar M, Crea F, Hackett D (1989) Spontaneous coronary artery spasm in variant angina is caused by a local hyperreactivity to a generalized constrictor stimulus. J Am Coll Cardiol 14:1456–1463PubMedCrossRefGoogle Scholar
  29. Kawano M, Kanzaki T, Koshikawa T, Morisaki N, Saito Y, Yoshida SH (1990) Pathologic phenotype of aortic smooth muscle cell causes diabetic macroangiopathy (Abstr)? Arteriosclerosis 10:841aGoogle Scholar
  30. Kobbah M, Ewald U, Tuvemo T (1985) Vascular reactivity during the first year of diabetes in children. Acta Paediatr Scand Suppl 320:56–63PubMedCrossRefGoogle Scholar
  31. Koltai MZ, Pogátsa G (1985) Die Interaktion der Prostaglandinen und Adenosin in der Regulation der Koronardurchblutung (Abstr). Z Kardiol 74 [Suppl 5]: 911Google Scholar
  32. Koltai MZ, Jermendy G, Kiss V, Wagner M, Pogâtsa G (1984) The effect of sympathetic stimulation and adenosine on coronary circulation and heart function in diabetes mellitus. Acta Physiol Hung 63:119–125PubMedGoogle Scholar
  33. Koltai MZ, Wagner M, Pogátsa G (1983) Altered hyperemic response of the coronary arterial bed in alloxan-diabetes. Experientia 39:738–740PubMedCrossRefGoogle Scholar
  34. Koltai MZ, Hadházy P, Malomvölgyi B, Pogátsa G (1985a) The role of prostaglandins in the altered coronary reactivity of alloxan-diabetic dogs (Abstr). G Arteriosclerosi 1 [Suppl 1 ]:119Google Scholar
  35. Koltai MZ, Hadházy P, Pogátsa G (1985b) Effects of prostaglandins on coronary arteries (Abstr). J Mol Cell Cardiol 17 [Suppl 3]:120Google Scholar
  36. Koltai MZ, Hadházy P, Malomvölgyi B, Kiss V, Pogátsa G (1986a) Effect of prostacyclin on the coronary, femoral and coeliac arterial bed in diabetes mellitus. Adv Pharmacol Res Pract 3:377–382Google Scholar
  37. Koltai MZ, Wagner M, Balogh I, Kiss V, Köszeghy A, Pogátsa G (1986b) Effect of acute hypoxia on cardiac function in alloxan-diabetic dogs. Basic Res Cardiol 81:92–100PubMedCrossRefGoogle Scholar
  38. Koltai MZ, Kösen P, Hadházy P, Ballagi-Pordány G, Köszeghy A, Pogátsa G (1988a) Effects of hypoxia and adrenergic stimulation induced alterations in PGI2 synthesis by diabetic coronary arteries. J Diabetes Complic 1:5–7Google Scholar
  39. Koltai MZ, Rösen P, Hadházy P, Ballagi-Pordány G, Köszeghy A, Pogátsa G (1988b) Relationship between vascular adrenergic receptors and prostaglandin biosyntheses in canine diabetic coronary arteries. Diabetologia 31:681–686PubMedCrossRefGoogle Scholar
  40. Koltai MZ, Rösen P, Hadházy P, Ballagi-Pordány G. Aranyi Z, Pogátsa G (1988c) Hypoxia-induced alterations of prostaglandin synthesis mediated by α-adrenoceptors in canine coronary arteries (Abstr). J Mol Cell Cardiol 20 [Suppl 5]:611Google Scholar
  41. Koltai MZ, Rösen P, Ballagi-Pordány G, Hadházy P, Pogátsa G (1990) Increased vasoconstrictor response to norepinephrine in femoral vascular bed of diabetic dogs. Is thromboxane A2 involved? Cardiovasc Res 24:707–710PubMedCrossRefGoogle Scholar
  42. Koltai MZ, Rösen P, Hadházy P, Ballagi-Pordány G, Aranyi Z, Pogátsa G (1994) The role of vascular adrenergic mechanism in the haemodynamic and prostacyclin stimulating effects of angiotensin in diabetic dogs. Circ Res (in press)Google Scholar
  43. Kubota I, Fukuhara T, Kinoshita M (1990) Permeability of small coronary arteries and myocardial injury in hypertensive diabetic rats. Int J Cardiol 29:349–355PubMedCrossRefGoogle Scholar
  44. Lambert CR, Pepine CJ (1990) Coronary artery spasm: American view. Coronary Artery Dis 1:654–659CrossRefGoogle Scholar
  45. Langsh HG, Nowak W, Mohnike A (1970) Diabetes mellitus: 10. Makroangiopathie und Neuropathie bei Diabetes mellitus. Z Arztl Fortbild 64:867–871Google Scholar
  46. Longhurst PA, Head RJ (1985) Responses of the isolated perfused mesenteric vasculature from diabetic rats: the significance of appropriate control tissues. J Pharmacol Exp Ther 235:45–49PubMedGoogle Scholar
  47. Lorini R, Chirico G, Larizza D, Cortona L, Rondini G, Severi F (1987) Vascular reactivity in diabetic children. Acta Paediatr Scand 76:151–152PubMedCrossRefGoogle Scholar
  48. Lucas PD, Foy JM (1977) Effects of experimental diabetes and genetic obesity on regional blood flow in the rat. Diabetes 26:786–792PubMedCrossRefGoogle Scholar
  49. Lüscher TF (1988a) Atherosclerosis: vascular responsiveness of atherosclerotic blood vessels. In: Lüscher TF (ed) Endothelial vasoactive substances and cardiovascular disease. Karger, Basel, pp 83–85Google Scholar
  50. Lüscher TF (1988b) Diabetic vascular disease. In: Lüscher TF (ed) Endothelial vasoactive substances and cardiovascular disease. Karger, Basel, p 111Google Scholar
  51. McNeill JH, Vadlamudi RVSV (1982) Effects of acute and chronic experimental diabetes on rat cardiac cyclic AMP and phosphorylase-A levels. Fed Proc 41:1358Google Scholar
  52. Morff RJ (1990) Microvascular reactivity to norepinephrine at different arteriolar levels and durations of streptozocin-induced diabetes. Diabetes 39:354–360PubMedCrossRefGoogle Scholar
  53. Palik I, Koltai MZ, Wagner M, Kolonics I, Pogátsa G (1982a) Altered adrenergic responses of the coronary arterial bed in alloxan-diabetic dogs. Experientia 38:934–935PubMedCrossRefGoogle Scholar
  54. Palik I, Koltai MZ, Wagner M, Kolonics I, Pogátsa G (1982b) Effects of coronary occlusion and norepinephrine on the myocardium of alloxen-diabetic dogs. Basic Res Cardiol 77:499–505PubMedCrossRefGoogle Scholar
  55. Pfaffman MA, Dudley P, Prater A (1983) Relationship between untreated and insulin-treated diabetes and vascular relaxation. Arch Int Pharmacodyn Ther 266:131–143PubMedGoogle Scholar
  56. Pieper GM, Gross GJ (1988) Oxygen free radicals abolish endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 255:H825–H833PubMedGoogle Scholar
  57. Pieper GM, Gross GJ (1990) Differential response of postischemic diabetic myocardium to a thromboxane-mimetic. Eicosanoids 3:127–133PubMedGoogle Scholar
  58. Pierce GN, Beamish RE, Dhalla NS (1988) Dysfunction of the cardiovascular system during diabetes: etiology of heart failure during diabetes: microvascular lesions in the heart. In: Pierce GN, Beamish RE, Dhalla NS (eds) Heart dysfunction in diabetes. CRC, Boca Raton, pp 63–67Google Scholar
  59. Pogátsa G (1980) Altered adrenergic response of the coronary and femoral arterial bed in alloxan-diabetic dogs. Adv Physiol Sci 27:213–226Google Scholar
  60. Pogátsa G (1991a) Effect of prostaglandins on the diabetic heart and coronary circulation. In: Nagano M, Dhalla NJ (eds) The diabetic heart. Raven, New York, pp 45–58Google Scholar
  61. Pogátsa G (1991b) The role of diabetic vascular alterations in the development of myocardial ischaemia. Bratisl Lek Listy 92:24–33PubMedGoogle Scholar
  62. Pogátsa G, Koltai MZ (1983) Altered vascular reactivity of coronary and femoral arterial beds in alloxan-diabetic dogs. Proc Int Union Physiol Sci 15:493Google Scholar
  63. Pogátsa G, Koltai MZ, Hadházy P, Köszeghy A, Ballagi-Pordány G (1986a) Interaction between prostanoids and vasodilating endogenous agents in the altered reactivity in diabetes mellitus. Proc Int Union Physiol Sci 16:595Google Scholar
  64. Pogátsa G, Koltai MZ, Köszeghy A, Ballagi-Pordány G (1986b) Effects of insulin treatment and indomethacin on altered vascular reactivity in diabetes mellitus (Abstr). J Mol Cell Cardiol 18 [Suppl 2]:98Google Scholar
  65. Pogátsa G, Koltai MZ, Hadházy P, Köszeghy A, Ballagi-Pordány G (1988a) Insulin induced reversibility of altered responsiveness in femoral arterial bed of diabetic dogs. Diabetes Res 9:41–45PubMedGoogle Scholar
  66. Pogátsa G, Koltai MZ, Ballagi-Pordány G (1988b) Effect of insulin treatment on the altered coronary vascular reactions in diabetes (Abstr). J Mol Cell Cardiol 20 [Suppl 5]:60Google Scholar
  67. Reibel DK, Roth DM, Lefer BL, Lefer AM (1983) Hyperreactivity of coronary vasculature in platelet-perfused hearts from diabetic rats. Am J Physiol 245: H640–H645PubMedGoogle Scholar
  68. Rösen P, Senger W, Freuerstein J, Grote H, Reinauer H, Schrör K (1983) Influence of streptozotocin diabetes on myocardial lipids and prostaglandin release by the rat heart. Biochem Med 30:19–33PubMedCrossRefGoogle Scholar
  69. Roth DM, Reibel DK, Lefer AM (1982) Altered vascular reactivity and prostacyclin generation in diabetic rats. Fed Proc 41:856Google Scholar
  70. Roth DM, Reibel DK, Lefer AM (1983) Vascular responsiveness and eicosanoid production in diabetic rats. Diabetologia 24:372–376PubMedCrossRefGoogle Scholar
  71. Roth DM, Reibel DK, Lefer AM (1984) Altered coronary vascular responsiveness to leucotrienes in alloxan-diabetic rats. Circ Res 54:388–395PubMedGoogle Scholar
  72. Rubányi G, Galvas P, DiSalvo J, Paul RJ (1986) Eicosanoid metabolism and β-adrenergic mechanisms in coronary arterial smooth muscle: potential compartmentation of cAMP. Am J Physiol 250:C406–C412PubMedGoogle Scholar
  73. Rubier S, Sajadi MRM, Araoye MA, Holford FD (1978) Noninvasive estimation of myocardial performance in patents with diabetes. Effect of alcohol administration. Diabetes 27:127–134Google Scholar
  74. Sanderson JE, Brown DJ, Rivellese A, Kohner E (1978) Diabetic cardiomyopathy? An echocardiography study of young diabetics. Br Med J 1:404–407PubMedCrossRefGoogle Scholar
  75. Sarubbi D, McGriff JC, Quilley J (1989) Renal vascular responses and eicosanoid release in diabetic rats. Am J Physiol 257:F762–F768PubMedGoogle Scholar
  76. Scarborough NL, Carrier GO (1983) Increased α2-adrenoreceptor mediated vascular contraction in diabetic rats. J Auton Pharmacol 3:177–183PubMedCrossRefGoogle Scholar
  77. Shaffer JE, Malik KU (1982) Activation of cardiac β-adrenoceptors enhances the output of prostaglandins in the rabbit heart. Fed Proc 41:1766Google Scholar
  78. Shah S (1980) Cardiomyopathy in diabetes mellitus. Angiology 31:502–504CrossRefGoogle Scholar
  79. Silberbauer K, Schernthaner G, Sizinger H, Clopath P, Piza-Katzer H, Winer M (1979) Diminished prostacyclin generation in human and experimentally induced (streptozotocin, alloxan) diabetes mellitus. Thromb Hemost 42:334Google Scholar
  80. Siperstein MD, Unger RH, Madison LL (1968) Studies of muscle capillary membrane in normal subjects, diabetic and prediabetic patients. J Clin Invest 47:1973–1999PubMedCrossRefGoogle Scholar
  81. Stam H, Hülsmann WC (1977) Effect of fasting and streptozotocin-diabetes on the coronary flow in isolated rat hearts: a possible role of endogenous catecholamines and prostaglandins. Basic Res Cardiol 72:365–375PubMedCrossRefGoogle Scholar
  82. Steiner G (1981) Diabetes and atherosclerosis. Diabetes 30 [Suppl 2]:1–7PubMedGoogle Scholar
  83. Stuart MJ, Setty Y, Sunderji S, Boone S, Ganley C (1985) Abnormalities in vascular arachidonic acid metabolism in the infant of the diabetic mother (Abstr). Pediatr Res 19:321AGoogle Scholar
  84. Szentiványi M, Pék L (1973) Characteristic changes of vascular adrenergic reactions in diabetes mellitus. Nature [New Biol] 243:276–277Google Scholar
  85. Thom SA, Hughes AD, Martin G, Sever PS (1987) Endothelium-dependent relaxation in isolated human arteries and veins. Clin Sci 73:547–552PubMedGoogle Scholar
  86. Tomiyama M, Minagawa A, Suzuki T, Munahata J, Iwasaki T, Tanaka K, Nakajima S, Takayama K (1976) Muscle metabolism during exercise. Jpn Diabetic Soc 19:130–140Google Scholar
  87. Turlapaty PDMV, Altura BM (1980) Magnesium ions and contractions of alloxan-diabetic vascular muscle. Artery 6:375–384Google Scholar
  88. Vogt W (1978) Role of phospholipase A2 in prostaglandin formation. Adv Prostaglandin Thromboxane Res 3:89–95PubMedGoogle Scholar
  89. Waber S, Meister V, Rossi GL, Mordasini C, Reisen WF (1981) Studies on retinal microangiopathy and coronary macroangiopathy in rats with streptozotocin-induced diabetes. Virchows Arch [B] 37:1–10CrossRefGoogle Scholar
  90. White RE, Carrier GO (1988) Enhanced vascular-adrenergic neuroeffector system in diabetes: importance of calcium. Am J Physiol 255:H1036–H1042PubMedGoogle Scholar
  91. Zhao JB, Mikata A, Azuma K (1990) Immunoglobulin deposits in diabetic microangiopathy. Observations in autopsy materials. Acta Pathol Jpn 40:729–734PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • G. Pogátsa

There are no affiliations available

Personalised recommendations