Skip to main content

Structure of Smooth Muscles

  • Chapter
Pharmacology of Smooth Muscle

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 111))

Abstract

Smooth muscle is widespread; it is found in all viscera and vessels, and is a major component in the wall of all tubular organs (one of the few exceptions is the bile duct of some species, such as the rat, which has no muscle). The appearance of many smooth muscles under a microscope varies to an extent which is surprisingly small by comparison with the wide range of functional properties found in different muscles. Yet, the structure of the muscle, which comes to life only at the level of resolution that can be achieved by electron microscopy, has features which account for its different mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashton FT, Somlyo AV, Somlyo AP (1975) The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J Mol Biol 98:17–29

    PubMed  CAS  Google Scholar 

  • Bennett T, Cobb JLS (1969) Studies on the avian gizzard: the development of the gizzard and its innervation. Z Zellforsch 98:599–621

    PubMed  CAS  Google Scholar 

  • Berner PF, Somlyo AV, Somlyo AP (1981) Hypertrophy-induced increase of intermediate filaments in vascular smooth muscle. J Cell Biol 88:96–101

    PubMed  CAS  Google Scholar 

  • Bevan RD, van Marthens E, Bevan J (1976) Hyperplasia of vascular smooth muscle in experimental hypertension in the rabbit. Circ Res 38 [Suppl II]:58–62

    PubMed  CAS  Google Scholar 

  • Beyer EC, Kistler J, Paul DL, Goodenough DA (1989) Antisera directed against connexin 43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108:595–605

    PubMed  CAS  Google Scholar 

  • Blank R, Thompson M, Owens G (1988) Cell cycle versus density dependence of smooth muscle alpha actin expression in cultured rat aortic muscle cells. J Cell Biol 107:299–306

    PubMed  CAS  Google Scholar 

  • Bois RM (1973) The organization of the contractile apparatus of vertebrate smooth muscle. Anat Rec 93:138–149

    Google Scholar 

  • Bond M, Somlyo AV (1982) Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95:403–413

    PubMed  CAS  Google Scholar 

  • Bond M, Kitizawa T, Somlyo AP, Somlyo AV (1985) Release and recycling of calcium by the sarcoplasmic reticulum in guinea pig portal vein smooth muscle. J Physiol (Lond) 355:677–695

    Google Scholar 

  • Burridge K, Connell L (1983) Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil 3:405–417

    PubMed  CAS  Google Scholar 

  • Burridge K, Mangeat P (1984) An interaction between vinculin and talin. Nature 308:744–745

    PubMed  CAS  Google Scholar 

  • Büssow H, Wulfhekel U (1972) Die Feinstruktur der glatten Muskelzellen in den grossen muskulären Arterien der Vögel. Z Zellforsch Mikrosk Anat 125:339–352

    PubMed  Google Scholar 

  • Byers TJ, Kunkel LM, Watkins SC (1991) The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J Cell Biol 115:411–421

    PubMed  CAS  Google Scholar 

  • Campbell GR, Chamley JH, Burnstock G (1974) Development of smooth muscle cells in tissue culture. J Anat 117:295–312

    PubMed  CAS  Google Scholar 

  • Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  • Cooke P (1976) A filamentous cytoskeleton in vertebrate smooth muscle fibers J Cell Biol 68:539–556

    PubMed  CAS  Google Scholar 

  • Cooke PH, Chase RH (1971) Potassium chloride-insoluble myofilaments in vertebrate smooth muscle cells. Exp Cell Res 66:417–425

    PubMed  CAS  Google Scholar 

  • Cooke PH, Fay FS, Craig R (1989) Myosin filaments isolated from skinned amphibian smooth muscle cells are side-polar. J Muscle Res Cell Motil 10:206–220

    PubMed  CAS  Google Scholar 

  • Craig R, Megerman J (1977) Assembly of smooth muscle myosin into side-polar filaments. J Cell Biol 75:990–996

    PubMed  CAS  Google Scholar 

  • Crone C (1986) Modulation of solute permeability in microvascular endothelium Fed Proc 45:77–83

    PubMed  CAS  Google Scholar 

  • Dahl GP, Berger W (1978) Nexus formation in the myometrium during parturition and induced by estrogen. Cell Biol Int Rep 2:381–387

    PubMed  CAS  Google Scholar 

  • Devine CE, Rayns DG (1975) Freeze-fracture studies of membrane systems in vertebrate muscle. II. Smooth muscle. J Ultrastruct Res 51:293–306

    PubMed  CAS  Google Scholar 

  • Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation- contraction coupling in mammalian smooth muscles. J Cell Biol 52:690–718

    PubMed  CAS  Google Scholar 

  • Donahoe JR, Bowen JM (1972) Analysis of the spontaneous motility of the avian embryonic gizzard. Am J Vet Res 33:1835–1848

    PubMed  CAS  Google Scholar 

  • Draeger A, Stelzer EHK, Herzog M, Small JV (1989) Unique geometry of actin- membrane anchorage sites in avian gizzard smooth muscle cells. J Cell Sci 94:703–711

    PubMed  Google Scholar 

  • Drenckhahn D, Beckerle M, Burridge K, Otto J (1988) Identification and subcellular location of talin in various cell types and tissues by means of [125I]vinculin overlay, immunoblotting and immunocytochemistry. Eur J Cell Biol 46:513–522

    PubMed  CAS  Google Scholar 

  • Evans DHL, Evans EM (1964) The membrane relationships of smooth muscles: an electron microscope study. J Anat 98:37–46

    PubMed  CAS  Google Scholar 

  • Fawcett DW, McNutt NS (1969) The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol 42:1–45

    PubMed  CAS  Google Scholar 

  • Fay FS, Fujiwara K, Rees DD, Fogarty KE (1983) Distribution of α-actinin in single isolated smooth muscle cells. J Cell Biol 96:783–795

    PubMed  CAS  Google Scholar 

  • Fischer E (1944) The birefringence of striated and smooth mammalian muscles. J Cell Comp Physiol 23:1130–130

    Google Scholar 

  • Fisher BA, Bagby RM (1977) Reorientation of myofilaments during contraction of a vertebrate smooth muscle. Am J Physiol 232:C5–C14

    PubMed  CAS  Google Scholar 

  • Folkow B (1982) Physiological aspects of primary hypertension. Physiol Rev 62:347–504

    PubMed  CAS  Google Scholar 

  • Forbes MS, Rennels ML, Nelson E (1979) Caveolar systems and sarcoplasmic reticulum in coronary smooth muscle cells of the mouse. J Ultrastruct Res 67:325–339

    PubMed  CAS  Google Scholar 

  • Franke WW, Schmid E, Freudenstein C, Appelhans B, Osborn M, Weber K, Keenan TW (1980) Intermediate-sized filaments of the prekeratin type in myoepithelial cells. J Cell Biol 84:633–654

    PubMed  CAS  Google Scholar 

  • Fujimoto T (1993) Calcium pump of the plasma membrane is localized in caveolae. J Cell Biol 120:1147–1157

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K (1992) Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell Biol 119:1507–1513

    PubMed  Google Scholar 

  • Gabbiani G, Schmid E, Winter S, Chaponnier C, de Chastonay C, Vandekerckhove J, Weber K, Franke WW (1981) Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific α-type actin. Proc Nat Acad Sci USA 78:298–302

    PubMed  CAS  Google Scholar 

  • Gabella G (1983) Asymmetric distribution of dense bands in muscle cells of mammalian arterioles. J Ultrastruct Res 84:24–33

    PubMed  CAS  Google Scholar 

  • Gabella G (1984) Structural apparatus for force transmission in smooth muscles. Physiol Rev 64:455–477

    PubMed  CAS  Google Scholar 

  • Gabella G (1985) Chicken gizzard. The muscle, the tendon and their attachment. Anat Embryol 171:151–162

    PubMed  CAS  Google Scholar 

  • Gabella G (1988) Structure of the intestinal musculature. In: Wood JD (ed) Motility and circulation. American Physiological Society, Bethesda, pp 103–139 (Handbook of physiology, vol 4)

    Google Scholar 

  • Gabella G (1989) Development of smooth muscle: ultrastructural study of the chick embryo gizzard. Anat Embryol 180:213–226

    PubMed  CAS  Google Scholar 

  • Gabella G (1990) Hypertrophy of visceral smooth muscle. Anat Embryol 182: 409–24

    PubMed  CAS  Google Scholar 

  • Gabella G, Blundell D (1979) Nexuses between the smooth muscle cells of the guinea-pig ileum. J Cell Biol 82:239–247

    PubMed  CAS  Google Scholar 

  • Garfield RE, Daniel EE (1976) Relation to membrane vesicles to volume control and Na+-transport in smooth muscle: studies on Na+ rich tissues. J Mechanochem Cell Motil 4:157–176

    Google Scholar 

  • Garfield RE, Sims SM, Daniel EE (1977) Gap junctions: their presence and necessity in myometrium during parturition. Science 198:958–959

    PubMed  CAS  Google Scholar 

  • Geiger B (1979) A 130K protein from chcken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205

    PubMed  CAS  Google Scholar 

  • Geiger B, Dutton AH, Tokayasu KT, Singer SJ (1981) Immunoelectron microscope studies of membrane-microfilament interaction. The distribution of alpha-actinin, tropomyosin and vinculin intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 91:614–628

    PubMed  CAS  Google Scholar 

  • Gillis JM, Cao ML, Godfraind-De Becker A (1988) Density of myosin filaments in the rat anococcygeus muscle, at rest and in contraction. II. J Muscle Res Cell Motil 9:18–28

    PubMed  CAS  Google Scholar 

  • Haussman M, Biancani P, Weiss RM (1979) Obstruction-induced changes in longitudinal force-length relations of rabbit ureter. Invest Urol 17:223–226

    Google Scholar 

  • Heidlage JF, Anderson NC Jr (1984) Ultrastructure and morphometry of the stomach muscle of Amphiuma tridactylum. Cell Tissue Res 236:393–397

    PubMed  CAS  Google Scholar 

  • Hinssen H, D’Haese J, Small JV, Sobieszek A (1978) Mode of filament assembly of myosins from muscle and non-muscle cells. J Ultrastruct Res 64:282–302

    PubMed  CAS  Google Scholar 

  • Hirai SI, Hirabayashi T (1983) Developmental changes of proein constituents in chicken gizzards. Dev Biol 97:483–493

    PubMed  CAS  Google Scholar 

  • Hirai SI, Hirabayashi T (1986) Development of myofibrils in the gizzard of chicken embryos. Intracellular distribution of structural proteins and development of contractility. Cell Tissue Res 243:487–493

    PubMed  CAS  Google Scholar 

  • Huiatt TW, Robson RM, Arakawa N, Stromer MH (1980) Desmin from avian smooth muscle. Purification and partial characterization. J Biol Chem 255:6981–6989

    PubMed  CAS  Google Scholar 

  • Jacobs LR (1985) Differential effects of diatary fibers on rat intestinal circular muscle cell size. Dig Dis Sci 30:247–252

    PubMed  CAS  Google Scholar 

  • Johansson B (1976) Structural and functional changes in rat portal vein after experimental portal hypertension. Acta Physiol Scand 98:381–383

    PubMed  CAS  Google Scholar 

  • Kamio A, Huang WY, Imai H, Kummerow FA (1977) Mitotic structures of aortic smooth muscle cells in swine and in culture: paired cisternae. J Electron Microsc (Tokyo) 26:29–40

    CAS  Google Scholar 

  • Kannan MS, Daniel EE (1978) Formation of gap junctions by treatment in vitro with potassium conductance blockers. J Cell Biol 78:338–348

    PubMed  CAS  Google Scholar 

  • Kargacin GJ, Cooke PH, Abramsom SB, Fay FS (1989) Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J Cell Biol 108:1465–1475

    PubMed  CAS  Google Scholar 

  • La Mantia J, Shafiq SA (1982) Developmental changes in the plasma membrane of gizzard smooth muscle of the chicken. A freeze-fracture study. J Anat 134: 243–253

    PubMed  Google Scholar 

  • Leeson TS, Leeson GR (1965) The rat ureter. Fine structural changes during development. Acta Anat 62:60–79

    PubMed  CAS  Google Scholar 

  • Linderkamp O, Meiselman HJ (1982) Geometric, osmotic, and membrane mechanical properties of density-separated human red cells. Blood 59:1121–1127

    PubMed  CAS  Google Scholar 

  • Mackenzie LW, Garfield RE (1985) Hormonal control of gap junctions in the myometrium. Am J Physiol 248:C296–C302

    PubMed  CAS  Google Scholar 

  • McGuffeee LJ, Bagby RM (1976) Ultrastructure, calcium accumulation, and contractile response in smooth muscle. Am J Physiol 230:1217–1224

    Google Scholar 

  • Moss F, Leblond C (1970) Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol 44:459–462

    PubMed  CAS  Google Scholar 

  • Mulvany M, Baandrup U, Gundersen H (1985) Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a threedimensional disector. Circ Res 57:794–800

    PubMed  CAS  Google Scholar 

  • Murphy RA, Driska SP, Cohen DM (1977) Variations in actin to myosin ratios and cellular force generation in vertebrate smooth muscles. In: Casteels R (ed) Excitation-contraction coupling in smooth muscle. Elsevier/North-Holland, Amsterham, pp 417–424

    Google Scholar 

  • Nasu F, Inomata K (1990) Ultracytochemical demonstration of Ca1+-ATPase activity in the rat saphenous artery and its innervated nerve terminal. J Electron Micr 39:487–491

    CAS  Google Scholar 

  • North AJ, Galazkiewicz B, Byers TJ, Glenney JR, Small JV (1993) Complemetary distribution of vinculin and dystrophin define two distinct sarcolemma domains in smooth muscle. J Cell Biol 120:1159–1167

    PubMed  CAS  Google Scholar 

  • Ogawa KS, Fujimoto K, Ogawa K (1986) Ultracytochemical studies of adenosine nucleotidases in aortic endothelial and smooth muscle cells – Ca2+-ATPase and Na+, K+-ATPase. Acta Histochem Cytochem 19:601–620

    CAS  Google Scholar 

  • Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometric study of early postnatal development of the thoracic aorta in the rat. Circ Res 47:417–424

    PubMed  CAS  Google Scholar 

  • Osborne-Pellegrin MJ (1978) Some ultrastructural characteristics of the renal artery and abdominal aorta of the rat. J Anat 125:641–652

    PubMed  CAS  Google Scholar 

  • O’Shea JM, Robson RM, Huiatt TW, Hartzer MK, Stromer MH (1979)

    Google Scholar 

  • Owens GK (1989) Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol 257:H1755–H1765

    PubMed  CAS  Google Scholar 

  • Owens G, Reidy M (1985) Hyperplastic growth response of vascular muscle cells following induction of acute hypertension in rats by aortic coarctation. Circ Res 57:695–705

    PubMed  CAS  Google Scholar 

  • Owens GK, Schwartz SM (1983) Vascular smooth muscle cell hypertrophy and hyperploidy in the Goldblatt hypertensive rat. Circ Res 53:491–501

    PubMed  CAS  Google Scholar 

  • Pease DC, Molinari S (1960) Electron microscopy of muscular arteries: pial vessels of the cat and monkey. J Ultrastruct Res 3:447–468

    PubMed  CAS  Google Scholar 

  • Popescu LM, Diculescu I (1975) Calcium in smooth muscle sarcoplasmic reticulum in situ. Conventional and X-ray analytical electron microscopy. J Cell Biol 67:911–918

    PubMed  CAS  Google Scholar 

  • Popescu LM, Diculescu I, Zelck V, Ionescu N (1974) Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res 154:357–378

    PubMed  CAS  Google Scholar 

  • Prescott L, Brightman MW (1976) The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue Cell 8:241–258

    PubMed  CAS  Google Scholar 

  • Risek B, Guthrie S, Kumar N, Giula NJ (1990) Modulation of gap junction transcript and protein expression during pregnancy in the rat. J Cell Biol 110:269–282

    PubMed  CAS  Google Scholar 

  • Rumyantsev PP, Snigirevskaya E (1968) Ultrastructure of differentiating cells of the heart muscle in the state of mitotic division. Acta Morphol Acad Sci Hung 16:271–283

    PubMed  CAS  Google Scholar 

  • Schollmeyer JE, Furcht LJ, Goll DE, Robson RM, Stromer MH (1976) Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblasts. In: Goldman AR, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 361–388

    Google Scholar 

  • Small JV (1974) Contractile units in vertebrate smooth muscle cells. Nature 249: 324–327

    PubMed  CAS  Google Scholar 

  • Small JV (1977) Studies on isolated smooth muscle cells: the contractile apparatus. J Cell Sci 24:327–349

    PubMed  CAS  Google Scholar 

  • Small JV (1985) Geometry of actin-membrane attachments in the smooth muscle cell: the localizations of vinculin and α-actinin. EMBO J 4:45–49

    PubMed  CAS  Google Scholar 

  • Small JV, Sobieszek A (1980) The contractile apparatus of smooth muscle. Int Rev Cytol 64:241–306

    PubMed  CAS  Google Scholar 

  • Small JV, Furst DO, DeMay J (1986) Localization of filamin in smooth muscle. J Cell Biol 102:210–220

    PubMed  CAS  Google Scholar 

  • Small JV, Herzog M, Barth M, Draeger A (1990) Supercontracted state of verte brate smooth muscle cell fragments reveals myofilament lengths. J Cell Biol 111:2451–2461

    PubMed  CAS  Google Scholar 

  • Somlyo AV, Butler TM, Bond M, Somlyo AP (1981) Myosin filaments have non- phosphorylated light chains in relaxed smooth muscle. Nature 294:567–569

    PubMed  CAS  Google Scholar 

  • Sommer JR, Johnson EA (1968) Cardiac muscle. A comparative study of Pukinje fibers and ventricular fibers. J Cell Biol 36:497–526

    PubMed  CAS  Google Scholar 

  • Sperelakis NJ (1991) Electric field model: an alternative mechanism for cell-to-cell propagation in cardiac muscle and smooth muscle. J Gastrointest Motil 3:64–83

    Google Scholar 

  • Stuewer D, Gröschel-Stewart U (1985) Expression of immunoreactive myosin and myoglobin in the developing chicken gizzard. Roux’s Arch Dev Biol 194:417–424

    CAS  Google Scholar 

  • Stromer MH, Bendayan M (1988) Arrangement of desmin intermediate filaments in smooth muscle cells as shown by high-resolution immunocytochemistry. Cell Motil Cytoskel 11:117–125

    CAS  Google Scholar 

  • Tsukita S, Tsukita S, Ishikawa H (1983) Association of actin and 10nm filaments with the dense body in smooth muscle cells of the chicken gizzard. Cell Tissue Res 229:233–242

    PubMed  CAS  Google Scholar 

  • Uvelius B, Persson L, Mattiasson A (1984) Smooth muscle cell hypertrophy and hyperplasia in the rat detrusor after short term infravesical outflow obstruction. J Urol 131:173–176

    PubMed  CAS  Google Scholar 

  • Volberg T, Sabanay H, Geiger B (1986) Spatial and temporal relationships between vinculin and talin in the developing chicken gizzard smooth muscle. Differentiation 32:34–43

    PubMed  CAS  Google Scholar 

  • Warshaw DM, McBride WJ, Work SS (1987) Corkscrew-like shortening in single smooth muscle cells. Science 236:1457–1459

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Burnstock G (1969) Post-natal development of smooth muscle cells in the mouse vas deferens. J Anat 104:1–15

    PubMed  CAS  Google Scholar 

  • Zak R (1973) Cell proliferation during cardiac growth. Am J Cardiol 3:211–219

    Google Scholar 

  • Zamir O, Hanani M (1990) Intercellular dye-coupling in intestinal smooth muscle. Are gap junctions required for intercellular coupling? Experientia 46:1002–1005

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabella, G. (1994). Structure of Smooth Muscles. In: Szekeres, L., Papp, J.G. (eds) Pharmacology of Smooth Muscle. Handbook of Experimental Pharmacology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78920-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78920-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78922-9

  • Online ISBN: 978-3-642-78920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics