Skip to main content

Cell Differentiation and Programmed Cell Death: A New Approach to Leukemia Therapy

  • Conference paper
Acute Leukemias V

Part of the book series: Haematology and Blood Transfusion / Hämatologie und Bluttransfusion ((HAEMATOLOGY,volume 37))

  • 72 Accesses

Abstract

The establishment of a cell culture system for the clonal development of hematopoietic cells has made it possible to discover the proteins that regulate cell viability, growth and differentiation of different hematopoietic cell lineages and the molecular basis of normal and abnormal cell development in blood forming tissues. These regulators include cytokines now called colony stimulating factors and interleukins. Different cytokines can induce cell viability, multiplication and differentiation, and hematopoiesis is controlled by a network of cytokine interactions. Cytokines induce viability by inhibiting programmed cell death (apoptosis) including inhibition of apoptosis in leukemic cells treated with cytotoxic chemotherapy and irradiation therapy. Apoptosis and development of hematopoietic cells are also controlled by different genes including the tumor suppressor gene wild-type p53 and the oncogenes mutant p53, deregulated c-myc and bcl-2. Identification of the molecular controls of normal cell viability, growth and differentiation have made it possible to identify changes in the developmental program that result in leukemia. When normal cells have been changed into leukemic cells, the malignant phenotype can again be suppressed by inducing differentiation and apoptosis. Results on the suppression of malignancy in myeloid leukemia have shown that suppression of malignancy does not have to restore all the normal controls, and that genetic abnormalities which give rise to malignancy can be bypassed and their effects nullified by inducing differentiation and apoptosis. The results provide a new approach to therapy.

“The described cultures thus seem to offer a useful system for a quantitative kinetic approach to hematopoietic cell formation and for experimental studies on the mechanism and regulation of hematopoietic cell differentiation”[1].

In order to analyze the controls that regulate viability, multiplication and differentiation of normal hematopoietic cells to different cell lineages and the changes in these controls in disease, it is desirable and convenient to study the entire process in cell culture starting from single cells. Analysis of the molecular control of different types of hematopoietic cells therefore began with the development of a cell culture system for the cloning and clonal differentiation of different types of normal hematopoietic cells. This cell culture system was then used to discover a family of cytokines that regulate cell viability, multiplication and differentiation of different hematopoietic cell lineages, to analyze the origin of some hematological diseases, and to identify ways of treating these diseases with normal cytokines. I will mainly discuss cells of the myeloid cell lineages which have been used as a model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ginsburg H., Sachs L. 1963. Formation of pure suspensions of mast cells in tissue culture by differentiation of lymphoid cells from the mouse thymus. J. Natl. Cancer Inst. 31: 1–40.

    PubMed  CAS  Google Scholar 

  2. Sachs, L. 1978. Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukaemia. Nature, 274: 535–539.

    Article  PubMed  CAS  Google Scholar 

  3. Sachs, L. 1986. Growth, differentiation and the reversal of malignancy. Scientific American, 254: 40–47.

    Article  PubMed  CAS  Google Scholar 

  4. Sachs, L. 1987. The molecular control of blood cell development. Science, 238: 1374–1379.

    Article  PubMed  CAS  Google Scholar 

  5. Sachs, L. 1990. The control of growth and differentiation in normal and leukemic blood cells. The 1989 Alfred P. Sloan Prize of the General Motors Cancer Research Foundation. Cancer, 65: 2196–2206.

    Article  PubMed  CAS  Google Scholar 

  6. Sachs, L. 1993. The molecular control of hemopoiesis and leukemia. C.R. Acad. Sci. Paris, Sciences de la vie, 316: 882–891.

    Google Scholar 

  7. Pluznik D.H., Sachs L. 1965. The cloning of normal “mast” cells in tissue culture. J. Cell Comp. Physiol. 66: 319–324.

    Article  CAS  Google Scholar 

  8. Ichikawa Y., Pluznik D.H., Sachs L. 1966. In vitro control of the development of macrophage and granulocytes colonies. Proc. Natl. Acad. Sci. USA 56: 488–495.

    Article  PubMed  CAS  Google Scholar 

  9. Bradley T.R., Metcalf D. 1966. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 44: 287–300.

    Article  PubMed  CAS  Google Scholar 

  10. Pluznik D.H., Sachs L. 1966. The induction of clones of normal “mast” cells by a substance from conditioned medium. Exp. Cell Res. 43: 553–563.

    Article  PubMed  CAS  Google Scholar 

  11. Paran M., Sachs L., Barak Y., Resnitzky P. 1970. In vitro induction of granulocyte differentiation in hematopoietic cells from leukemic and non-leukemic patients. Proc. Natl. Acad. Sci. USA 67: 1542–1549.

    Article  PubMed  CAS  Google Scholar 

  12. Pike B., Robinson W.A. 1970. Human bone marrow growth in agar gel. J. Cell Physiol. 76: 77–84.

    Article  PubMed  CAS  Google Scholar 

  13. Stephenson J.R., Axelrad A.A., McLeod D.L., Shreeve M.M. 1971. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 68: 1542–1546.

    Article  PubMed  CAS  Google Scholar 

  14. Metcalf D., Nossal G.J.V., Warner N.L., Miller J.F.A.P., Mandel T.E., Layton J.E., Gutman G.A. 1975. Growth of B lymphocyte colonies in vitro. J. Exp. Med. 142: 1534–1549.

    Article  PubMed  CAS  Google Scholar 

  15. Gerassi E., Sachs L. 1976. Regulation of the induction of colonies in vitro by normal human lymphocytes. Proc. Natl. Acad. Sci. USA 73: 4546–4550.

    Article  PubMed  CAS  Google Scholar 

  16. Metcalf D., McDonald H.R., Odartchenko N., Sordat B. 1975. Growth of mouse megakaryocyte colonies in vitro. Proc. Natl. Acad. Sci. USA 72: 1744–1748.

    Article  PubMed  CAS  Google Scholar 

  17. Lotem J., Sachs L. 1989. Regulation of meagakaryocyte development by interleukin-6. Blood 74: 1545–1551

    PubMed  CAS  Google Scholar 

  18. Sachs L. 1970. In vitro control of growth and development of hematopoietic cell clones. In: Regulation of Hematopoiesis, Vol. 1, A.S. Gordon, ed. New York: Appleton-Century-Crofts, 217–233.

    Google Scholar 

  19. Sachs L. 1974. Regulation of membrane changes, differentiation and malignancy in carcinogenesis. Harvey Lectures, Vol. 68, New York: Academic Press, 1–35.

    Google Scholar 

  20. Landau T., Sachs L. 1971. Characterization of the inducer required for the development of macrophage and granulocyte colonies. Proc. Natl. Acad. Sci. USA 68: 2540–2544.

    Article  PubMed  CAS  Google Scholar 

  21. Burgess A.W., Camakaris J., Metcalf D. 1977. Purification and properties of colony-stimulating factor from mouse lung conditioned medium. J. Biol. Chem. 252: 1998–2003.

    PubMed  CAS  Google Scholar 

  22. Stanley E.R., Heard P.M. 1977. Factors regulating macrophage production and growth. Purification and some properties of the colony stimulating factor from medium conditioned by mouse cells. J. Biol. Chem. 252: 4305–4312.

    PubMed  CAS  Google Scholar 

  23. Lipton J., Sachs L. 1981. Characterization of macrophage and granulocyte inducing proteins for normal and leukemic myeloid cells produced by the Krebs ascites tumor. Biochim. Biophys. Acta. 673: 552–569.

    Article  PubMed  CAS  Google Scholar 

  24. Ihle J.N., Keller J., Henderson L., Klein F., Palaszinski E. 1982. Procedures for the purification of interleukin-3 to homogeneity. J. Immunol. 129: 2431–2436.

    PubMed  CAS  Google Scholar 

  25. Mier J.W., Gallo R.C. 1980. Purification and some characterisitics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media. Proc. Natl. Acad. Sci. USA 77: 6134–6138.

    Article  PubMed  CAS  Google Scholar 

  26. Hirano T., Akira S., Taga T., Kishimoto T. 1990. Biological and clinical aspects of interleukin 6. Immunol. Today 11: 443–449.

    Article  PubMed  CAS  Google Scholar 

  27. Paran M., Sachs L. 1968. The continued requirement for inducer for development of macrophage and granulocyte colonies. J. Cell. Physiol. 72: 247–250.

    Article  PubMed  CAS  Google Scholar 

  28. Ichikawa Y., Pluznik D.H., Sachs L. 1967. Feedback inhibition of the development of macrophage and granulocyte colonies. I. Inhibition by macrophages. Proc. Natl. Acad. Sci. USA 58: 1480–1486.

    Article  PubMed  CAS  Google Scholar 

  29. Metcalf D. 1985. The granulocyte-macrophage colony-stimulating factors. Science 199: 16–22.

    Article  Google Scholar 

  30. Lotem J., Cragoe E.J., Sachs L. 1991. Rescue from programmed cell death in leukemic and normal myeloid cells. Blood 78: 953–960.

    PubMed  CAS  Google Scholar 

  31. Sachs L., Lotem J. 1993. Control of programmed cell death in normal and leukemic cells: New implications for therapy. Blood 82: 15–21.

    PubMed  CAS  Google Scholar 

  32. Clark S.C., Kamen R. 1987. The human hematopoietic colony-stimulating factors. Science 236: 1129–1237.

    Article  Google Scholar 

  33. Lotem J., Sachs L. 1990. Selective regulation of the activity of different hematopoietic regulatory proteins by transforming growth factor b1 in normal and leukemic myeloid cells. Blood 76: 1315–1322.

    PubMed  CAS  Google Scholar 

  34. Lotem J., Shabo Y., Sachs L. 1991. The network of hematopoietic regulatory proteins in myeloid cell differentiation. Cell Growth Differ. 2: 421–427.

    PubMed  CAS  Google Scholar 

  35. Sachs L. 1991. Keynote Address for Symposium on: A Visionary Assessment of the Scientific, Clinical and Economic Implications of Hematopoietic Growth Factors. Cancer (May 15 Supplement) 67: 2681–2683.

    Article  PubMed  CAS  Google Scholar 

  36. Motro B., Itin A., Sachs L., Keshet E. 1990. Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc. Natl. Acad. Sci. USA 87: 3092–3096.

    Article  PubMed  CAS  Google Scholar 

  37. Lotem J., Sachs L. 1986. Regulation of cell surface receptors for different hematopoietic growth factors on myeloid leukemic cells. EMBO J. 5: 2163–2170.

    PubMed  CAS  Google Scholar 

  38. Lotem J., Sachs, L. 1989. Induction of dependence on hematopoietic proteins for viability and receptor upregulation in differentiating myeloid leukemic cells. Blood 74: 579–585.

    PubMed  CAS  Google Scholar 

  39. Shabo Y., Lotem J., Sachs L. 1990. Induction of genes for transcription factors by normal hematopoietic regulatory proteins in the differentiation of myeloid leukemic cells. Leukemia 4: 797–801.

    PubMed  CAS  Google Scholar 

  40. Sachs L. 1987. The molecular regulators of normal and leukaemic blood cells. The Wellcome Foundation Lecture 1986. Proc. Roy. Soc. Lond. B 231: 289–312.

    Article  CAS  Google Scholar 

  41. Lotem J., Sachs L. 1978. In vivo induction of normal differentiation in myeloid leukemic cells. Proc. Natl. Acad. Sci. USA 75: 3781–3785.

    Article  PubMed  CAS  Google Scholar 

  42. Lotem J., Sachs L. 1981. In vivo inhibition of the development of myeloid leukemia by injection of macrophage and granulocyte inducing protein. Int. J. Cancer 28: 375–386

    Article  PubMed  CAS  Google Scholar 

  43. Lotem J., Sachs L. 1984. Control of in vivo differentiation of myeloid leukemic cells. IV. Inhibition of leukemia development by myeloid differentiation-inducing protein. Int. J. Cancer 33: 147–154.

    Article  PubMed  CAS  Google Scholar 

  44. Gootwine E., Webb C.G., Sachs, L. 1982. Participation of myeloid leukaemic cells injected into embryos in haematopoietic differentiation in adult mice. Nature, 299: 63–65.

    Article  PubMed  CAS  Google Scholar 

  45. Webb C.G., Gootwine E., Sachs, L. 1984. Developmental potential of myeloid leukemia cells injected into mid-gestation embryos. Develop. Biol. 101: 221–224.

    Article  PubMed  CAS  Google Scholar 

  46. Sachs L. 1987. Cell differentiation and by-passing of genetic defects in the suppression of malignancy. Cancer Res., 47: 1981–1986.

    PubMed  CAS  Google Scholar 

  47. Blatt C., Aberdam D., Schwartz R., Sachs, L. 1988. DNA rearrangement of a homeobox gene in myeloid leukaemic cells. EMBO J., 7: 4283–4290.

    PubMed  CAS  Google Scholar 

  48. Blatt C., Lotem J., Sachs, L. 1992. Inhibition of specific pathways of myeloid cell differentiation by an activated Hox-2.4 homeobox gene. Cell Growth Differ., 3: 671–676.

    PubMed  CAS  Google Scholar 

  49. Azumi J., Sachs, L. 1977. Chromosome mapping of the genes that control differentiation and malignancy in myeloid leukemic cells. Proc. Natl. Acad. Sci. USA, 74: 253–257.

    Article  PubMed  CAS  Google Scholar 

  50. Blatt C., Sachs, L. 1988. Deletion of a homeobox gene in myeloid leukemias with a deletion in chromosome 2. Biochem. Biophys. Res. Commun., 156: 1265–1270.

    Article  PubMed  CAS  Google Scholar 

  51. Sachs L. 1982. Normal development programmes in myeloid leukaemia. Regulatory proteins in the control of growth and differentiation. Cancer Surveys 1: 321–342.

    Google Scholar 

  52. Degos L. 1992. All-trans-retinoic acid treatment and retinoic acid receptor alpha gene rearrangement in acute promyelocytic leukemia: a model for differentiation therapy. Int. J. Cell Cloning 10: 63–69.

    Article  PubMed  CAS  Google Scholar 

  53. Williams G.T., Smith C.A., Spooncer E., Dexter T.M., Taylor D.R. 1990. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343: 76–79.

    Article  PubMed  CAS  Google Scholar 

  54. Arends M.J., Wyllie A.H. 1991. Apoptosis: Mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32: 223–254.

    PubMed  CAS  Google Scholar 

  55. Fibach E., Sachs L. 1976. Control of normal differentiation of myeloid leukemic cells. XI. Induction of a specific requirement for cell viability and growth during the differentiation of myeloid leukemic cells. J. Cell. Physiol. 89: 259–266.

    Article  PubMed  CAS  Google Scholar 

  56. Lotem J., Sachs L. 1982. Mechanisms that uncouple growth and differentiation in myeloid leukemia cells. Restoration of requirement for normal growth-inducing protein without restoring induction of differentiation-inducing protein. Proc. Natl. Acad. Sci. USA 79: 4347–4351.

    Article  PubMed  CAS  Google Scholar 

  57. Lotem J., Sachs L. 1983. Coupling of growth and differentiation in normal myeloid precursors and the breakdown of this coupling in leukemia. Int. J. Cancer 32: 127–134.

    Article  PubMed  CAS  Google Scholar 

  58. Levine A.J., Momand J., Finlay C.A. 1991. The P53 tumor suppressor gene. Nature 351: 453–456.

    Article  PubMed  CAS  Google Scholar 

  59. Yonish-Rouach E, Resnitzky D., Lotem J., Sachs L., Kimchi A., Oren M. 1991. Wild type P53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin 6. Nature 352: 345–347.

    Article  PubMed  CAS  Google Scholar 

  60. Lotem J., Sachs, L. 1993. Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82: 1092–1096.

    PubMed  CAS  Google Scholar 

  61. Lotem J., Sachs, L. 1993. Regulation by bcl-2, c-myc and P53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation competent and defective myeloid leukemic cells. Cell Growth Differ., 4: 41–47.

    PubMed  CAS  Google Scholar 

  62. Bissonnette R.P., Echeverri F., Mahboudi A., Green D.R. 1992. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359: 552–554.

    Article  PubMed  CAS  Google Scholar 

  63. Fanidi A., Harrington E.A., Evan, G.I. 1992. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359: 554–556.

    Article  PubMed  CAS  Google Scholar 

  64. Korsmeyer S.J. 1992. Bcl-2 initiates a new category of oncogenes: Regulators of cell death. Blood 80: 879–886.

    PubMed  CAS  Google Scholar 

  65. Lowe S.W., Schmitt E.M., Smith S.W., Osborne B.A., Jacks T. 1993. P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.

    Article  PubMed  CAS  Google Scholar 

  66. Clarke A.R., Purdie C.A., Harrison D.J., Morris R.G., Bird C.C., Hooper M.L., Wylie A.H. 1993. Thymocyte apoptosis induced by p53-dependant and independant pathways. Nature 362: 849–852.

    Article  PubMed  CAS  Google Scholar 

  67. Lotem J., Sachs L. 1994. Control of sensitivity to induction of apoptosis in myeloid leukemic cells by differentiation and bcl-2 dependent and independent pathways. Cell Growth Differ. 5: 321–327.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sachs, L. (1996). Cell Differentiation and Programmed Cell Death: A New Approach to Leukemia Therapy. In: Hiddemann, W., et al. Acute Leukemias V. Haematology and Blood Transfusion / Hämatologie und Bluttransfusion, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78907-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78907-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78909-0

  • Online ISBN: 978-3-642-78907-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics