Advertisement

Dynamic Interplay Between Wetting and Phase Separation in Geometrically Confined Polymer Mixtures

  • Hajime Tanaka

Abstract

Here we study the interplay between wetting and phase separation for binary polymer mixtures confined in one-dimensional (1D) or two-dimensional (2D) capillaries. It is found that near the symmetric composition, the hydrodynamics unique to bicontinuous phase separation plays a crucial role on the wetting dynamics and the surface effect is strongly delocalized by the interconnectivity of the phases. The wetting dynamics is discussed on the basis of the hydrodynamic coarsening, focussing on the effect of the dimensionality of the geometrical confinement. We also discuss the possibility that the quick reduction of the interface area spontaneously causes double phase separation.

Keywords

Phase Separation Droplet Growth Transverse Curvature Capillary Instability Symmetric Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    J.D.Gunton, M.San Miguel, and P.Sahni, in Phase Transition and Critical Phenomena,edited by C.Domb and J.H.Lebowitz,(Academic, London, 1983), Vol.8.Google Scholar
  2. [2]
    J.W. Cahn, J.Chem.Phys. 66, 3667 (1977).CrossRefGoogle Scholar
  3. [3]
    D. Jasnow, Rep.Prog.Phys. 47, 1059 (1984).CrossRefGoogle Scholar
  4. [4]
    P.G. de Gennes, Rev.Mod.Phys. 57, 827 (1985).CrossRefGoogle Scholar
  5. [5]
    K. Williams and R.A. Dawe, J.Colloid Interface Sci. 117, 81 (1987).CrossRefGoogle Scholar
  6. [6]
    A.J. Liu, D.J. Durian, E. Herbolzheimer, and S.A. Safran, Phys.Rev.Lett. 65. 1897 (1990).CrossRefGoogle Scholar
  7. [7]
    P. Guenoun, D. Beysens, and M. Robert, Phys.Rev.Lett. 65, 2406 (1990).CrossRefGoogle Scholar
  8. [8]
    P. Wiltzius and A. Cumming, Phys.Rev.Lett. 66, 3000 (1991).CrossRefGoogle Scholar
  9. [9]
    F. Bruder and R. Brenn, Phys.Rev.Lett. 69, 624 (1992).CrossRefGoogle Scholar
  10. [10]
    U. Steiner, J. Klein, E. Eiser, A. Budkowski, L.J. Fetter, Science 258, 1126 (1992).Google Scholar
  11. [11]
    J. Bodensohn and W.I. Goldburg, Phys.Rev. A46, 5084 (1992).Google Scholar
  12. [12]
    H. Tanaka, Phys.Rev.Lett. 70, 53 (1993).CrossRefGoogle Scholar
  13. [13]
    H. Tanaka, Phys.Rev.Lett. 70, 2770 (1993).CrossRefGoogle Scholar
  14. [14]
    E.D. Siggia, Phys.Rev. A20, 1979 (1979).Google Scholar
  15. [15]
    H. Tanaka, unpublished.Google Scholar
  16. [16]
    H. Tanaka, Phys.Rev.E 47, 2946 (1993).CrossRefGoogle Scholar
  17. [17]
    M. San Miguel, M. Grant, and J.D. Gunton, Phys.Rev. A31, 1001 (1985).CrossRefGoogle Scholar
  18. [18]
    P. Guenoun, R. Gastaud, F. Perrot, and D. Beysens, Phys.Rev. A36, 4876 (1987).CrossRefGoogle Scholar
  19. [19]
    F.S. Bates and P. Wiltzius, J.Chem.Phys. 91, 3258 (1989).CrossRefGoogle Scholar
  20. [20]
    The trapezoidal profile is probably a good approximation in the late stage (τ = t/(ξ 2 /D)> 200) [18], and this assumption will not affect the main conclusion.Google Scholar
  21. [21]
    A. Cumming, P. Wiltzius, F.S. Bates, J.H. Rosedale, Phys.Rev. A45, 885 (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Hajime Tanaka
    • 1
  1. 1.Institute of Industrial ScienceUniversity of TokyoMinato-ku, Tokyo 106Japan

Personalised recommendations