Advertisement

Physiological Changes in Plants Related To UV-B Radiation: An Overview

  • Manfred Tevini
Part of the NATO ASI Series book series (volume 18)

Abstract

Since local and global ozone depletion scenarios have given rise to the expectancy of increasing UV-B radiation (280–320 nm) on the earth’s surface, biological impacts on plants have gained high scientific as well as political interest. Increases in UV-B radiation have already been observed in Antarctica during the ozone hole development as well as in the Northern hemisphere.2–5

Keywords

Leaf Area Action Spectrum United Nations Environmental Program Stratospheric Ozone Fluence Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lubin, D., B.G. Mitchell, J.E. Frederick, A.D. Alberts, C.R. Booth, T. Lucas, and D. Neuschuler. 1992. A contribution toward understanding the biospherical significance of Antarctic ozone depletion. J. Geophys. Res. 97:7817–7828.Google Scholar
  2. 2.
    Lubin, D., and J.E. Frederick. 1990. Column ozone measurements from Palmer Station, Antarctica: Variations during the austral springs of 1988 and 1989. J. Geophys. Res. 95:13883–13889.CrossRefGoogle Scholar
  3. 3.
    Lubin, D., and J.E. Frederick. 1991. The ultraviolet radiation environment of the Antarctic Peninsula: The roles of ozone and cloud cover. J. Appl. Met. 30:478–493.CrossRefGoogle Scholar
  4. 4.
    Blumthaler, M., and W. Ambach. 1990. Indication of increasing solar ultraviolet-B radiation flux in Alpine regions. Science 248, 206–208.PubMedCrossRefGoogle Scholar
  5. 5.
    Blumthaler, M. 1993. Solar UV Measurements. In: M. Tevini (ed.), UV-B radiation and ozone depletion: Effects on humans, animals, plants, microorganisms, and materials, Lewis Publishers BocaRaton, USA. p.71ff.Google Scholar
  6. 6.
    UNEP. 1989. Environmental effects panel report. In: J.C. van der Leun, M. Tevini, and R.C. Worrest (eds.), United Nations Environmental Program, Nairobi, Kenya.Google Scholar
  7. 7.
    UNEP. 1991. Environmental effects of ozone depletion: 1991 update. In: J.C. van der Leun, M. Tevini, and R.C. Worrest (eds.), United Nations Environmental Program, Nairobi, Kenya.Google Scholar
  8. 8.
    SCOPE. 1992. Effects of increased ultraviolet radiation on biological systems: A research implementation plan addressing the impacts of increased UV radiation due to stratospheric depletion. Proceedings, Budapest, February.Google Scholar
  9. 9.
    MacLochlainn, C., 1993. Report on stratospheric ozone and ultraviolet radiation. DG XII-Environment Program, Services of the EC Commission.Google Scholar
  10. 10.
    Caldwell, M.M., A.H. Teramura, and M. Tevini. 1989. The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol. Evol. 4:363–366.PubMedCrossRefGoogle Scholar
  11. 11.
    Bornman, J.F. 1089. Target sites of UV-B radiation in photosynthesis of higher plants. J. Photochem. and Photobiol. B Biology 4, 145–158.CrossRefGoogle Scholar
  12. 12.
    Tevini, M., J. Braun, P. Grusemann, and J. Ros. 1989. UV-Wirkungen auf Nutzpflanzen. In: Lauffener Sem. beitr. 3/88, 38–51. Akad. Natursch. Landschaftspflege (ANL) Laufen/Salzach.Google Scholar
  13. 13.
    Teramura, A.H., L.H. Ziska, and A.E. Szetin. 1991. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol. Plant. 83:373–380.CrossRefGoogle Scholar
  14. 14.
    Tevini, M., and A.H. Teramura. 1989. UV-B effects on terrestrial plants. Photochem. Photobiol. 50:479–487.CrossRefGoogle Scholar
  15. 15.
    Krupa, S.V., and R.N. Kickert. 1989. The green-house-effect-impacts of ultraviolet-B (UV-B) radiation, carbon-dioxide (CO2), and ozone (O3) on vegetation. Env. Pollution 61:263–393.CrossRefGoogle Scholar
  16. 16.
    Stapleton A.E. 1992. Ultraviolet radiation and plants: Burning questions. Plant Cell 4:1353–1358.PubMedCrossRefGoogle Scholar
  17. 17.
    Tevini, M. 1993. Effects of enhanced UV-B radiation on terrestrial plants. In: M. Tevini (ed.), UV-B radiation and ozone depletion: Effects on humans, animals, plants, microorganisms, and materials, Lewis Publishers, Boca Raton, USA, pp. l25ff.Google Scholar
  18. 18.
    Bornman, J.F., and A.H. Teramura. 1993. The effects of ultraviolet-B radiation on terrestrial plants. In: L.O. Björn (ed.), Environmental UV-Photobiology, in press.Google Scholar
  19. 19.
    Setlow, R.B. 1974. The wavelength in sunlight effective in producing skin cancer: A theoretical analysis. Proc. Nat. Acad. Sci. 71:3363–3365.PubMedCrossRefGoogle Scholar
  20. 20.
    Caldwell, M.M. 1971. Solar UV irradiation and the growth and development of higher plants. In Photophysiology VI (edited by A.C. Giese) Academic Press, New York. pp. 131–268.Google Scholar
  21. 21.
    Caldwell, M.M., L. B. Camp, C.W. Warner, and S.D. Flint. 1986. Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. In: R.C. Worrest and M.M. Caldwell (eds.), Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. NATO ASI Series G: Ecological Sciences, 8:87–112. Springer-Verlag Berlin.Google Scholar
  22. 22.
    Coohill, T.P. 1989. Ultraviolet action spectra and solar effectiveness spectra for higher plants. Photochem. Photobiol. 50:451–457.CrossRefGoogle Scholar
  23. 23.
    Coohill, T.P. 1991. Photobiology School, Action Spectra Again? Photochem. Photobiol. 54:859–870.PubMedCrossRefGoogle Scholar
  24. 24.
    Quaite, F.E., M.B. Sutherland, and J.C. Sutherland. 1992b. Quantitation of pyrimidine dimers in DNA from UVB-irradiated alfalfa (Medicago sativa L.) seedlings. Applied and Theoretical Electrophoresis 2:171–175.Google Scholar
  25. 25.
    Steinmüller, D. 1986. On the effect of ultraviolet radiation (UV-B) on leaf surface structure and on the mode of action of cuticular lipid biosynthesis in some crop plants. Karls. Beitr. Entw. Ökophysiol. M. Tevini (ed.), 6:1–174.Google Scholar
  26. 26.
    Rundel, R.D. 1983. Action spectra and estimation of biologically effective UV radiation. Physiol. Plant. 58:360–366.CrossRefGoogle Scholar
  27. 27.
    Quaite F.E., B.M. Sutherland, and J.C. Sutherland. 1992a. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature 358:576–578.CrossRefGoogle Scholar
  28. 28.
    Mirecki, R.M., and A.H. Teramura. 1984. Effects of ultraviolet-B irradiance on soybean. V: The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant. Physiol. 74:475–480.PubMedCrossRefGoogle Scholar
  29. 29.
    Cen Y.-P, and J.F. Bornman. 1990. The response of bean plants to UV-B radiation under different irradiances of background visible light. J. Experim. Bot. 41:1489–1495.CrossRefGoogle Scholar
  30. 30.
    Sullivan, J.H., and A.H. Teramura. 1991. The effects of UV-B radiation on loblolly pine. 2: Growth of field-grown seedlings. Trees 6:115–120.Google Scholar
  31. 31.
    Sullivan, J.H., and A.H. Teramura. 1988. Effects of ultraviolet-B irradiation on seedling growth in the Pinaceae. Amer. J. Bot. 75:225–230.CrossRefGoogle Scholar
  32. 32.
    Glasgow, L. 1990. The history of the ozone layer. New Scientist, 1990:24 November.Google Scholar
  33. 33.
    Tevini, M., U. Mark, and M. Saile. 1990. Plant experiments in growth chambers illuminated with natural sunlight. In: H.D. Payer, T. Pfirrmann, and P. Mathy (eds.), Environmental Research with Plants in Closed Chambers, Air Pollution Res. Rep. 26:240–251.Google Scholar
  34. 34.
    Dai Q., P. V. P. Coronel, B.S. Vergara, P.W. Barnes, and A.T. Quintos. 1992. Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Sci. 32:1269–1274.CrossRefGoogle Scholar
  35. 35.
    Bachelet, P.W., D. Barnes, and M. Brown. 1991. Latitudinal and seasonal variations in calculated ultraviolet-B irradiance for rice-growing regions of Asia. Photochem. and Photobiol. 54:411–422.CrossRefGoogle Scholar
  36. 36.
    Kumagai T., and T. Sato. 1992. Inhibitory effects of increase in near-UV radiation on the growth of Japanese rice cultivars (Oryza sativa L.) in a phytron and recovery by exposure to visible radiation. Japan J. Breed. 42:545–552.Google Scholar
  37. 37.
    Tevini, M., U. Mark, G. Fieser, and M. Saile. 1991b. Effects of enhanced solar UV-B radiation on growth and function of selected crop plant seedlings. In: E. Riklis (ed.), Photobiology, Plenum Publ., New York, pp.635–649.Google Scholar
  38. 38.
    Tevini, M., J. Braun, and G. Fieser. 1991a. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem. Photobiol. 53:329–333.CrossRefGoogle Scholar
  39. 39.
    Mark, U. 1992. Zur Wirkung erhöhter artifizieller und solarer UV-B-Strahlung in Kombination mit erhöhter Temperatur und Kohlendioxidkonzentration auf das Wachstum und den Gas Wechsel von ausgewählten Nutzpflanzen. (On the effect of increased artificial and solar UV-B radiation in combination with increased temperature and carbon dioxide concentration on growth and gas exchange of selected crop plants). In: M. Tevini (ed.), Karlsr. Beitr. Entw. Ökophys. 11:1–220.Google Scholar
  40. 40.
    Teramura, A.H., and N.S. Murali. 1986. Intraspecific differences in growth and yield of soybean Glycine max exposed to UV-B radiation under greenhouse and field conditions. Environ. Exp. Bot. 26:89–95.CrossRefGoogle Scholar
  41. 41.
    Tevini, M., and W. Iwanzik. 1986. Effects of UV-B radiation on growth and development of cucumber seedlings. In: R.C. Worrest and M.M. Caldwell (eds.), Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, NATO ASI Series G: Ecological Sciences, 8:271–286. Springer-Verlag Berlin.Google Scholar
  42. 42.
    Saile-Mark, M. 1993. Zur Beteiligung von Phytohermonen an Wachstum und Blütenbildung verschiedener Bohnenkulturvarietäten (Phaseolus vulgaris L.) in Abhängigkeit von artifizieller und solarer UV-B-Strahlung. Thesis, University of Karlsruhe.Google Scholar
  43. 43.
    Barnes, P.W., P.W. Jordan, W.G. Gold, S.D. Flint, and M.M. Caldwell. 1988. Competition morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Funct. Eco. 2:319–330.CrossRefGoogle Scholar
  44. 44.
    Ballare, C.L., P.W. Barnes, and R.E. Kendrick. 1991 a. Photomorphogenic effects of UV-B radiation on hypocotyl elongation in wild type and stable-phytochrome-deficient mutant seedlings of cucumber. Physiol. Plant 83:652–658.CrossRefGoogle Scholar
  45. 45.
    Ros, J. 1990. Zur Wirkung von UV-Strahlung auf das Streckungs Wachstum von Sonnenblumenkeimlingen (Helianthus annuus L.). (On the effect of UV-radiation on elongation growth of sunflower seedlings (Helianthus annuus L.) (Thesis). Karls. Beitr. Entw. Ökophysiol. 8:1–157. M. Tevini (ed.), Bot. Inst. II, Karlsruhe.Google Scholar
  46. 46.
    Panagopoulos, I., J.F. Bornman, and L.O. Björn. 1990. Effects of ultraviolet radiation and visible light on growth, fluorescence induction, ultraweak luminescence and peroxidase activity in sugar beet plants. Photochem. and Photobiol. B: Biol., 8:73–87.CrossRefGoogle Scholar
  47. 47.
    Ballare, C.L., J.J. Casal, and K.E. Kendrick. 1991b. Photochem. Photobiol. 54:819–826.CrossRefGoogle Scholar
  48. 48.
    Barnes P.W., S.D. Hint, and M.M. Caldwell. 1990. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Amer. J. Bot. 77:1354–1360.CrossRefGoogle Scholar
  49. 49.
    Ryel, R., P.W. Barnes, W. Beyschlag, M.M. Caldwell, and S.D. Flint. 1990. Plant competition for light analyzed with a multispecies canopy model. I: Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Oecol. 82:304–310.CrossRefGoogle Scholar
  50. 50.
    Gold, W.G., and M.M. Caldwell. 1983. The effects of ultraviolet-B radiation on plant competition in terrestrial ecosystems. Physiol. Plant. 58:435–444.CrossRefGoogle Scholar
  51. 51.
    Kasperbauer, L., and W. Loomis. 1965. Inhibition of flowering by natural daylight on an inbred strain of Melilotus. Crop Sic. 5:193–194.CrossRefGoogle Scholar
  52. 52.
    Caldwell, M.M. 1968. Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol. Monogr. 38, 243–288.CrossRefGoogle Scholar
  53. 53.
    Klein, R., P. Edsall, and A. Gentile. 1965. Effects of near- ultraviolet and green radiations on plant growth. National Sic. Foundation and Contract AT (30-1-2587) from the Atomic Energy Commission.Google Scholar
  54. 54.
    Rau, W., H. Hoffmann, A. Huber-Willer, U. Mitzke-Schnabel, and E. Schrott. 1988. Die Wirkung von UV-B auf photoregulierte Entwicklungsvorgänge bei Pflanzen. Gesellschaft für Strahlen- und Umweltforschung mbH., München Abschlu-ábericht.Google Scholar
  55. 55.
    Flint, S.D., and M.M. Caldwell. 1983. Influence of floral optical properties on the ultraviolet radiation environment of pollen. Amer. J. Bot. 70:1416–1419.CrossRefGoogle Scholar
  56. 56.
    Flint, S.D., and M.M. Caldwell. 1984. Partial inhibition of in vitro pollen germination by simulated ultraviolet-B radiation. Ecology 65:792–795.CrossRefGoogle Scholar
  57. 57.
    Teramura, A.H. 1986. Interaction between UV-B radiation and other stresses in plants. In: R.C. Worrest and M.M. Caldwell (eds.), Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, 375. NATO Advanced Science Institutes Series G, Ecological Sciences 8:327–344.Google Scholar
  58. 58.
    Murali, N.S., and A.H. Teramura. 1986. Effective-ness of UV-B radiation on the growth and physiology of field-grown soybean modified by water stress. Phytochem. Phytobiol. 44:215–219.CrossRefGoogle Scholar
  59. 59.
    Murali, N.S., and A.H. Teramura. 1987. Intensity of soybean photosynthesis to ultraviolet-B radiation under phosphorus deficiency. J. Plant. Nutr. 10:501–515.CrossRefGoogle Scholar
  60. 60.
    Iwanzik, W., M. Tevini, G. Dohnt, M. Voss, W. Weiss, P. Gröber, and G. Renger. 1983. Action of UV-B radiation on photosynthetic primary reactions in spinach chloroplasts. Physiol. Plant. 58:401–407.CrossRefGoogle Scholar
  61. 61.
    Renger, G., H.J. Eckert, R. Fromme, P. Grüber, M. Volker, and S. Hohmveit. 1989. On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem. Photobiol. 49:97–105.CrossRefGoogle Scholar
  62. 62.
    Strid A., W.S. Chow, and J.M. Anderson. 1990. Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochimica et Biophysica Acta, 1020:260–268.CrossRefGoogle Scholar
  63. 63.
    Yamashita, T., and W.L. Butler. 1968. Inhibiton of Chloroplasts by UV-Irradiation and Heat-Treatment. Plant Physiol. 43:2037–2040.PubMedCrossRefGoogle Scholar
  64. 64.
    Kulandaivelu, G., and A. Noorudeen. 1983. Comparative study of the action of ultraviolet-C and ultraviolet-B radiation on photosynthetic electron transport. Physiol. Plant. 58:389–394.CrossRefGoogle Scholar
  65. 65.
    Melis A., J.A. Nemson, and M.A. Harrison, 1992. Damage to functional components and partial degradation of photosystem II reaction center proteins upon chloroplast exposure to ultraviolet-B radiation. Biochem. Biophys. Acta 1100:312–320.CrossRefGoogle Scholar
  66. 66.
    Greenberg B.M., V. Gaba, O. Canaani, S. Malkin, A.K. Mattoo, and M. Edelman. 1989. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. Proc. Natl. Acad. Sic. 86:6617–6620.CrossRefGoogle Scholar
  67. 67.
    Nedunchezhian N., and G. Kulandaivelu. 1991. Evidence for the ultraviolet-B (280–320 nm) radiation induced structural reorganization and damage of photosystem II polypeptides in isolated chloroplasts. Physiol. Plant. 81:558–562.CrossRefGoogle Scholar
  68. 68.
    Greenberg, B.M., A.K. Mattoo, V. Gaba, and M. Edelman. 1989. Degration of the 32kDa photo-system-H reaction center protein in UV, visible and far red-light occurs through a common 23.5 kDa intermediate. Zeitschrift für Naturforschung 44:450–452.Google Scholar
  69. 69.
    Trebst, A., and B. Depka. 1990. Degradation of the D-! protein subunit of photosystem II in isolated thylakoids by UV light. Z. Naturforsch. 45c:765–771.Google Scholar
  70. 70.
    Trebst, A., and Pistorius, E. 1965. Photosythetische Reaktionen in UV-bestrahlten Chloroplasten. Z. Naturforschg. 20b:885–889.Google Scholar
  71. 71.
    Lichtenthaler, H.K., and M. Tevini. 1969. Die Wirkung von UV Strahlen auf die Lipochinon-Pigment-Zusammensetzung isolierter Spinat-chloroplasten. Z. für Naturforschung, Band 24b, Heft 6:764–769.Google Scholar
  72. 72.
    Tevini, M., and W. Iwanzik. 1983. Inhibition of photosynthetic activity by UV-B radiation in radish seedlings. Physiol. Plant. 58:395–400.CrossRefGoogle Scholar
  73. 73.
    Pfundel, E.E., R.S. Pan, and R.A. Dilley. 1992. Inhibition of violaxanthin deepoxidation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant. Physiol., 98:1372–1378.PubMedCrossRefGoogle Scholar
  74. 74.
    Prasil, O., N. Adie, and I. Ohad. 1992. Dynamics of photosystem II: Mechanisms of photoinhibition and recovery processes. In: J. Barber (ed.), The Photosystems: Structure, Function and Molecular Biology, Elsevier, Amsterdam, pp.295–348.Google Scholar
  75. 75.
    Jordan B.R., J. He, W.S. Chow, and J.M. Anderson. 1992. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation. Plant, Cell and Environ. 15:91–98.CrossRefGoogle Scholar
  76. 77.
    Jordan B.R., W.S. Cow, A. Strid, and J.M. Anderson. 1991. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation. FEBS Letters, 284:5–8, Elsevier Science Publishers B.V.PubMedCrossRefGoogle Scholar
  77. 78.
    Jordan, B.R. 1993. The molecular biology of plants exposed to ultraviolet-B radiation and the interaction with other stresses. In: M.B. Jackson and C.R. Black (eds.), Interacting Stresses on Plants in a Changing Climate, Nato Advanced Workshop, Measurements. Solar Energy. 49:535–540.Google Scholar
  78. 79.
    Chow, W.S., A. Strid, and J.M. Anderson. 1992. Short-term treatment of pea plants with supplementary ultraviolet-B radiation: Recovery time-courses of some photosynthetic functions and components. In: N. Murata (ed.), Proceedings of IX International Congress on Photosynthesis.Google Scholar
  79. 80.
    Biggs, R.H., and S.V. Kossuth. 1978. Effects of ultraviolet-B radiation enhancement under field conditions on potatoes, tomatoes, corn, rice, southern peas, peanuts, squash, mustard and radish. In: UV-B Biological and Climatic Effects Research (BACER). Final Report, US EPA, Washington, DC.Google Scholar
  80. 81.
    Biggs, R.H., P.G. Webb, T.R. Garrard, and S.H. West. 1984. The effects of enhanced ultraviolet-B radiation on rice, wheat, corn, soybean, citrus and duckweed. Year 3 Interim Report. 808075-03, US EPA. Washington, DC.Google Scholar
  81. 82.
    Dumpert, K., and T. Knacker. 1985. A comparison of the effects of enhanced UV-B radiation on some crop plants exposed to greenhouse and field conditions. Biochem. Physiol. Pflanz. 180:599–612.Google Scholar
  82. 83.
    Sinclair, T.R., O. N’Diaye, and R.H. Biggs. 1990. Growth and yield of field-grown soybean in response to enhanced exposure to ultraviolet-B radiation. J. Environ. Qual. 19:478–481.CrossRefGoogle Scholar
  83. 84.
    Biggs, R.H., S.V. Kossuth, and A.H. Teramura. 1981. Response of 19 cultivars of soybeans to ultraviolet-B irradiance. Physiol. Plant. 53, 19–26.CrossRefGoogle Scholar
  84. 85.
    Teramura, A.H., and J.H. Sullivan. 1988. Effects of ultraviolet-B radiation on soybean yield and seed quality: A six-year field study. Envir. Pollut. 53:466–468.CrossRefGoogle Scholar
  85. 86.
    Teramura, A.H., J.H. Sullivan, and J. Lydon. Effects of UV-B radiation on soybean yield and seed quality: A 6-year field study. Physiol. Plant. 80:5–11.Google Scholar
  86. 87.
    Pang, Q., and J.B. Hays. 1991. UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana, Plant. Physiol. 95:536–543.Google Scholar
  87. 88.
    Langer B., and E. Wellmann. 1990. Phytochrome induction of photoreactivating enzyme in Phaseolus vulgaris L. seedlings. Photochem. Photobiol. 52:861–863.CrossRefGoogle Scholar
  88. 89.
    Lercari, B., F.S. Sodi, and M. Lipucci di Paola. 1990. Photomorphogenic responses to UV radiation: Involvement of phytochrome and UV photoreceptors in the control of hypocotyl elongation in Lycopersicon esculentum. Physiol. Plant. 79:668–672.PubMedCrossRefGoogle Scholar
  89. 90.
    Jahnen W., and K. Hahlbrock. 1988. Differential regulation and tissue-specific distribution of enzymes of phenylpropanoid pathways in developing parsley seedlings. Planta 173:453–458.CrossRefGoogle Scholar
  90. 91.
    Hahlbrock K., and D. Scheel. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 40:347–369.CrossRefGoogle Scholar
  91. 92.
    Karabourniotis G., D. Papadopoulos, M. Papamarkou, and Y. Manetas. 1992. Ultraviolet-B radiation absorbing capacity of leaf hairs. Physiol. Plant. 86:414–418.CrossRefGoogle Scholar
  92. 93a.
    Bornman, J.F., and T.C. Vogelmann. 1991. Effects of UV-B radiation on leaf optical properties measured with fiber optics. J. Exper. Bot. 42:237CrossRefGoogle Scholar
  93. 93b.
    Bornman, J.F., and T.C. Vogelmann. 1991. Effects of UV-B radiation on leaf optical properties measured with fiber optics. J. Exper. Bot. 42: 547–554.CrossRefGoogle Scholar
  94. 94.
    De Lucia, E.H., T.A. Day, and T.C. Vogelmann. 1991. Ultraviolet-B radiation and Rocky Mountain environment: Measurement of incident light and penetration into foliage. In: D.D. Randall, D.G. Blevins, and C.D. Miles (eds.), Current Topics in Plant Biochemistry and Physiology. 10:32–48.Google Scholar
  95. 95.
    Day, T.A., T.C. Vogelmann, and E.H. DeLucia. 1992. Penetration of ultraviolet-B radiation in foliage of Rocky Mountain plants: Direct measurements with fiber-optic microrobes. Oecologia 83 (in press).Google Scholar
  96. 96.
    DeLucia, E.H., T.A. Day, and T.C. Vogelman. 1992. Ultraviolet-B and visible light penetration into needles of two species of subalpine conifers during foliar development. Plant Cell and Environ. 15:921–929.CrossRefGoogle Scholar
  97. 97.
    Braun, J., and M. Tevini. 1993. Regulation of UV-protective pigment synthesis in the epidermal layer of rye seedlings (Secale cereale L. cv Kustro). Photochem. Photobiol. 57, 318–323.CrossRefGoogle Scholar
  98. 98.
    Chappell J., and K. Hahlbrock. 1984. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature 311:76–78.CrossRefGoogle Scholar
  99. 99.
    Kuhn, D.N.J., Chappell A. Boudet, and K. Hahlbrock. 1984. Induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor. Proc. Natl. Acad. Sic. USA 81:1102–1106.CrossRefGoogle Scholar
  100. 100.
    Schmelzer, E., W. Jahnen, and K. Halbrock. 1988. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase and flavonoid end products in epidermal cells of parsley leaves. Proc. Natl. Acad. Sic. 85:2989–2993.CrossRefGoogle Scholar
  101. 101.
    Schulzelefert, P., W. Schulz, J.L. Dangl, M. Beckerandre, and K. Halbrock. Inducible in vivo DNA footprints define sequences necessary for UV-light activation of the parsley chalcone synthase gene. EMBO Journal 8:651–656.Google Scholar
  102. 102.
    Block A., J.L. Dangl, K. Hahlbrock, and P. Schulze-Lefert. 1990. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promotor. Proc. Natl. Acad. Sic. USA 87:5387–5391.CrossRefGoogle Scholar
  103. 103.
    Wingender R., H. Röhrig, C. Höricke, and J. Schell. 1990. Cis-regulatory elements involved in ultraviolet light regulation and plant defense. The plant Cell 2:1019–1026.PubMedCrossRefGoogle Scholar
  104. 104.
    Fritze K., D. Staiger, I. Czaja, R. Waiden, J. Schell, and D. Wing. 1991. Developmental and UV-light regulation of the snapdragon chalcone synthase promotor. Plant Cell 3:893–905.PubMedCrossRefGoogle Scholar
  105. 105.
    Weisshaar, B., G.A. Armstrong, A. Block, O. da Costa e Silva, and K. Hahlbrock. 1991a. Light-inducible and constitutively expressed DNA-bind-ing proteins recognizing a plant promoter element with functional relevance in light responsiveness. The EMBO Journal 10:1777–1786.Google Scholar
  106. 106.
    Weisshaar, B., A. Block, G.A. Armstrong, A. Herrmann, P. Schulze-Lefert, and K. Hahlbrock. 1991b. Regulatory elements required for light-mediated expression of the Petroselinum crispum chalcone synthase gene. In: G.I. Jenkins and W. Schuch (eds.), Society for Experimental Biology SEB Symposia Series 45:191–210.Google Scholar
  107. 107.
    Douglas, C., H. Hoffmann, W. Schulz, and K. Halbrock. 1987. Structure and elicitor of UV-light-stimulated expression of two 4-coumarate: CoA ligase gene in parsley. EMBO. J. 6:1189–1195.PubMedGoogle Scholar
  108. 108.
    Bruns B., K. Hahlbrock, and E. Schäfer. 1986. Fluence dependence of the ultraviolet-light-induced accumulation of chalcone synthase mRNA and effects of blue and far-red light in cultured parsley cells. Planta 169:393–398.CrossRefGoogle Scholar
  109. 109.
    Koes, R.E., J.N.M. Mol, and C.E. Spelt. 1989. The chalcone synthase multigene family of Petunia-Hybrida (V30)-differential, light-regulated expression during flower development and UV-light induction. Plant Molecular Bio. 12:213–225.CrossRefGoogle Scholar
  110. 110.
    Batschauer, A., E. Bruno, and E. Schäfer. 1991a. Cloning and characterization of a chalcone synthase gene from mustard and its light-dependent expression. Plant Molecular Biology 16:175–185.CrossRefGoogle Scholar
  111. 111.
    Ensminger, P.A., and E. Schäfer. 1992. Blue and ultraviolet-B light photoreceptors in Parsley cells. Photochem. Photobiol. 55:437–447.CrossRefGoogle Scholar
  112. 112.
    Smith, T.A. 1985. Polyamines. Ann. Rev. Plant Physiol. 36:117ff.Google Scholar
  113. 113.
    Kramer, G.F., D.T. Krizek, and R.M. Mirecki. 1992. Influence of photosynthetically active radiation and spectral quality on UV-B induced polyamine accumulation in soybean. Photochem. 31:1119–1125.CrossRefGoogle Scholar
  114. 114.
    Teramura, A.H., J.H. Sullivan, and L.H. Ziska. 1990. Interaction of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice and soybean. Plant Physiol. 94:470–475.PubMedCrossRefGoogle Scholar
  115. 115.
    van de Staaij, J.W., G.M. Lenssen, M. Stroetenga, and J. Rozema. 1992. The combined effects of elevated CO2 levels and UV-B radiation on growth characteristics of Elymus athericus (=E. pycnanathus), Vegetatio 0:1–8.Google Scholar
  116. 116.
    Rozema J., G.M. Lenssen, and J.W.M. van de Staaij. 1990. The combined effect of increased atmospheric CO2 and UV-B radiation on some agricultural and salt marsh species. In: J. Goudriaan, H. van Keulen, and H.H. van Laar (eds.), The Greenhouse Effect and Primary Productivity in European Agroecosystems, Pudoc, Wageningen, pp.68–71.Google Scholar
  117. 117.
    Tevini M., and U. Mark. 1993. Effects of elevated ultraviolet-B-radiation, temperature and CO2 on growth and function of sunflower and corn seedlings. In: A. Shima, M. Ichahashi, Y. Fujiwara, and H. Takebe (eds.), Frontiers Of Photobiology: Proceedings of the 11th International Congress on Photobiology, Kyoto, Japan, 7–12 Sep., 1992, Elsevier Science Publishers B.V.Google Scholar
  118. 118.
    Feder, W. A., and R. Shrier. 1992. Combination of UV-B and ozone reduces pollen tube growth more than either stress alone. Environ. Bot. 30:451–454.CrossRefGoogle Scholar
  119. 119.
    Dube, L.S., and J.F. Bornman. 1992. The response of young spruce seedlings to simultaneous exposure of ultraviolet-B radiation and cadmium. Plant Physiol. Biochem. 30:761–767.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Manfred Tevini
    • 1
  1. 1.Botanical Institute IIUniversity of KarlsruheKarlsruheGermany

Personalised recommendations