Modeling the Impacts of UV-B Radiation on Ecological Interactions in Freshwater and Marine Ecosystems

  • Horacio E. Zagarese
  • Craig E. Williamson
Conference paper
Part of the NATO ASI Series book series (volume 18)

Abstract

Recent data demonstrating global increases in biologically damaging UV-B radiation raise the need for knowledge of how natural communities and ecosystems will respond to these environmental changes. These responses are likely to differ in terrestrial versus aquatic environments, and in freshwater versus marine environments due to fundamental differences in the structure and function of these ecosystems.

Here we develop a simple conceptual model of how Zooplankton are likely to respond to changes in UV-B radiation. Recognizing the selective pressures of direct damage from UV-B radiation and the variety of responses that aquatic organisms exhibit in response to high levels of UV-B, we focus on the implications of these responses for ecological interactions at the community and ecosystem levels in freshwater and marine environments.

Key Words

UV-B radiation zooplankton vertical migration pigmentation environmental gradients light community structure aquatic ecosystem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambler, J.W. 1986. Effect of food quantity and food quality on egg production of Acartia tonsa Data from East Lagoon, Galveston, Texas. Estuarine Coastal Shelf Sci. 23:183–196.CrossRefGoogle Scholar
  2. 2.
    Baker, L. A., A.T. Herlihy, P.R. Kaufmann, and J.M. Eilers. 1991. Acidic lakes and streams in the United States: The role of acidic deposition. Science 252:1151–1154.Google Scholar
  3. 3.
    Bennett, S.J., R.W. Sanders, and K.G. Porter. 1990. Heterotrophic, autotrophic, and mixotrophicnanoflagellates: Seasonal abundances and bacterivory in aeutrophic lake. Limnol. Oceanogr. 35:1821–1832.CrossRefGoogle Scholar
  4. 4.
    Bidigare, R.R. 1989. Potential effects of UV-Bradiation on marine organisms of the southern ocean: Distributions of phytoplankton and krill during austral spring. Photochem. and Photobiol. 50:469–477.CrossRefGoogle Scholar
  5. 5.
    Bothwell, M.L., D. Sherbot, A.C. Roberge, and R.J. Daley. 1993. Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: Short-term versus long-term effects. J. Phycology. 29:24–35.CrossRefGoogle Scholar
  6. 6.
    Byron, E.R. 1982. The adaptive significance of calanoid copepod pigmentation: A comparative and experimental analysis. Ecology 63: 1871–1886.Google Scholar
  7. 7.
    Carpenter, S., et al. 1991. In Cole, J., G. Lovett, and S. Findlay (eds.) Comparative Analysis of Ecosystems: Patterns, Mechanisms, and Theories. New York: Springer-Verlag. 375 pp.Google Scholar
  8. 8.
    Carreto, J.I., M.O. Carignan, G. Daleo, and S.G. De Marco. 1990. Occurrence of mycosporine-like amino acids in the red-tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds? J. Plankton Res. 12:909–921.CrossRefGoogle Scholar
  9. 9.
    Confer, J.L., G.L. Howick, M.H. Corzete, S.L. Kramer, S. Fitzgibon, and R. Landesberg. 1978. Visual predation by planktivores. Oikos 31:27–37.CrossRefGoogle Scholar
  10. 10.
    Cullen, J.J. 1982. The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci. 39:791–803CrossRefGoogle Scholar
  11. 11.
    Cullen, J.J., P.J. Neale, and M.P. Lesser. 1992. Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation. Science. 258:646–650.PubMedCrossRefGoogle Scholar
  12. 12.
    Damkaer, D.M., D.B. Dey, G.A. Heron, and E.F. Prentice. 1980. Effects of UV-B radiation on near-surface Zooplankton of Puget Sound. Oecologia (Berlin) 44:149–158.CrossRefGoogle Scholar
  13. 13.
    Damkaer, D.M., and D.B. Dey. 1982. Short-term responses of some planktonic Crustacea exposed to enhanced UV-B radiation. In J. Calkins (ed.)., The Role of Solar Ultraviolet Radiation in Marine Ecosystems. Series IV: Marine Sciences, New York: Plenum, pp.417–427.Google Scholar
  14. 14.
    —. 1983. UV damage and photoreactivation potentials of larval shrimp, Pandalus platyceros, and adult euphausiids, Thysanoesa raschii. Oecologia (Berlin) 60:169–175.CrossRefGoogle Scholar
  15. 15.
    De Stasio, B.T., N. Nibbelink, and P. Olsen. 1993. Diel vertical migration and global climate change: Adynamic modeling approach to Zooplankton behavior. Verh. Int. Verein. Limnol. in press.Google Scholar
  16. 16.
    Diffey, B.L. 1991. Solar ultraviolet radiation effects on biological systems. Med. Biol. 36:299–328.CrossRefGoogle Scholar
  17. 17.
    Eisenstark, A. 1982. Action spectra and their role in solar UV-B studies. In: J. Calkins (ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystems. Series IV: Marine Sciences, New York, Plenum, pp. 157–159.Google Scholar
  18. 18.
    Gleason, J.F., P.K. Bhartia, J.R. Herman, R. McPeters, P. Newman, R.S. Stolarski, L. Flynn, G. Labow, D. Larko, C. Seftor, C. Wellemeyer, W.D. Komhyr, A.J. Miller, and W. Planet. 1993. Record low global ozone in 1992. Science 260:523–526.PubMedCrossRefGoogle Scholar
  19. 19.
    Häder, D., and M. Tevini. 1987. General photobiology. Oxford: Pergamon Press. 323 pp.Google Scholar
  20. 20.
    Häder, D., and R.C. Worrest. 1991. Effects of enhanced solar ultraviolet radiation on aquatic ecosystems. Photochem. Photobiol. 53:717–725.CrossRefGoogle Scholar
  21. 21.
    Hairston, N.G. 1976. Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proc. Nat. Acad. Sci. USA 73:971–974.PubMedCrossRefGoogle Scholar
  22. 22.
    —. 1979a. The adaptive significance of color polymorphism in two species of Diaptomus (Copepoda). Limnol. Oceanogr. 24:15–37.CrossRefGoogle Scholar
  23. 23.
    — 1979b. The effect of temperature on carotenoid photoprotection in the copepod Diaptomus nevadensis. Comp. Biochem. Physiol. 62A:445–448.CrossRefGoogle Scholar
  24. 24.
    Hairston, N.G., Jr. 1980. The vertical distribution of diaptomid copepods in relation to body pigmentation. In W.C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities, University Press of New England, Hanover, N.H. pp. 98–110.Google Scholar
  25. 25.
    Hebert, P.D.N., and C.J. Emery. 1990. The adaptative significance of cuticular pigmentation in Daphnia. Funct. Ecol. 4:703–710.CrossRefGoogle Scholar
  26. 26.
    Herman, A.W. 1989. Vertical relationships between chlorophyll, production and copepods in the eastern tropical Pacific. J. Plankton Res. 11:243–261.CrossRefGoogle Scholar
  27. 27.
    Hobaek, A., and H. Wolf. 1991. Ecological genetics of Norwegian Daphnia. II. Distribution of Daphnia longispina genotypes in relation to short-wave radiation and water colour. Hydrobiologia 225:229–243.CrossRefGoogle Scholar
  28. 28.
    Huntsman, A.G. 1924. Limiting factors for marine animals. I. The lethal effect of sunlight. Canadian Biology 2:83–88.Google Scholar
  29. 29.
    Karanas, J.J., R.C. Worrest, and H. Van Dyke. 1981. Impact of UV radiation on the fecundity of the copepod Acartia clausii. Mar. Biol. (Berlin) 65:125–133.CrossRefGoogle Scholar
  30. 30.
    Karentz, D., F.S. McEuen, and W.C. Dunlap. 1991. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure. Mar. Biol. (Berlin) 108:157–166.CrossRefGoogle Scholar
  31. 31.
    Kerfoot, W.C. (ed.). 1980. Evolution and Ecology of Zooplankton Communities. Univ. Press of New England, Hanover, NH. 800 pp.Google Scholar
  32. 32.
    Kerfoot, W. C., and A. Sih, eds. 1987. Predation: Direct and indirect impacts on aquatic communities. University Press of New England, Hanover, NH. 386 pp.Google Scholar
  33. 33.
    Lampert, W., W. Fleckner, H. Rai, and B.E. Taylor. 1986. Phytoplankton control by grazing Zooplankton: A study on the spring clear-water phase. Limnol. Oceanogr. 31:478–490.CrossRefGoogle Scholar
  34. 34.
    Leibold, M.A. 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134:922–949.CrossRefGoogle Scholar
  35. 35.
    Luecke, C., and J.O. O’Brien. 1981. Phototoxicity and fish predation: Selective factors in color morphs in Heterocope. Limnol. Oceanogr. 26:454–460.CrossRefGoogle Scholar
  36. 36.
    Madronich, S. 1992. Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth’s surface. Geophys. Res. Let. 19:37–40.CrossRefGoogle Scholar
  37. 37.
    Magnien, R.E., and J.J. Gilbert. 1983. Diel cycles of reproduction and vertical migration in the rotifer Keratella crassa and their influence on the estimation of population dynamics. Limnol. Oceanogr. 28:957–969.CrossRefGoogle Scholar
  38. 38.
    Magnuson, J.J., J.D. Maisner, and D.K. Hill. 1990. Potential changes in the thermal habitat of Great Lakes fish after global climate warming. Trans. Amer. Fish. Soc. 119:254–264.CrossRefGoogle Scholar
  39. 39.
    McLaren, I.A. 1963. Effects of temperature on growth of Zooplankton, and the adaptive value of vertical migration. J. Fish. Res. Board. Can. 20:685–727.CrossRefGoogle Scholar
  40. 40.
    Moore, A.R. 1912. Concerning negative phototropism in Daphnia pulex. Journal of Experimental Zoology 13:573–575.CrossRefGoogle Scholar
  41. 41.
    Moore, M., and C. Folt. 1993. Zooplankton body size and community structure: Effects of thermal and toxicant stress. Trends in Ecology and Evolution 8:178–183.PubMedCrossRefGoogle Scholar
  42. 42.
    O’Brien, W.J., and D. Kettle. 1979. Helmets and invisible armor: Structures reducing predation from tactile and visual planktivores. Ecology 60:287–294.CrossRefGoogle Scholar
  43. 43.
    Ohman. M.D. 1990. The demographic benefits of diel vertical migration by Zooplankton. Ecology 60:257–281.Google Scholar
  44. 44.
    Orcutt, J.D., and K.G. Porter. 1983. Diel vertical migration by Zooplankton: Constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Ocean. 28:720–730.CrossRefGoogle Scholar
  45. 45.
    Pace, M.L. 1984. Zooplankton community structure, but not biomass, influences the phosphorous-chlorophyll a relationship. Can. J. Fish. Aquat. Sci. 41:1089–1096.CrossRefGoogle Scholar
  46. 46.
    Pace, M.L., and J.D. Orcutt, Jr. 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater Zooplankton community. Limnol. Oceanogr. 26:822–830.CrossRefGoogle Scholar
  47. 47.
    Pennington, J., and R.B. Emlet. 1986. Ontogenetic and diel vertical migration of a planktonic echinoid larva, Dendrast erexcentricus (Eschscholtz): Occurence, causes, and probable consequences. J. Exp. Mar. Biol. Ecol. 104:69–95.CrossRefGoogle Scholar
  48. 48.
    Peters, R.H. 1983. The ecological implications of body size. 329 pp. Cambridge Studies in Ecology, E. Beck, H.J.B. Birk, and E.F. Connor (eds.), 2. Cambridge University Press.Google Scholar
  49. 49.
    Quintern, L.E., G. Horneck, U. Eschweiler, and H. Bucker. 1992. A biofilm used as ultraviolet-dosimeter. Photochem. Photobiol. 55:389–395.CrossRefGoogle Scholar
  50. 50.
    Regan, J.D., W.L. Carrier, H. Gucinski, B.L. Olla, H. Yoshida, R.K. Fujimura, and R.I. Wicklund. 1992. DNA as a solar dosimeter in the ocean. Photochem. Photobiol. 56:35–42.PubMedCrossRefGoogle Scholar
  51. 51.
    Ringelberg, J., A.L. Keyser, and B.J.G. Flik. 1984. The mortality effect of ultraviolet radiation in a red morph of Acanthodiaptomus denticornis (Crustacea: Copepoda) and its possible ecological relevance. Hydrobiologia 112:217–222.CrossRefGoogle Scholar
  52. 52.
    Ronto, G., S. Gaspar, and A. Berces. 1992. Phages T7 in biological UV dose measurement. J. Photochem. Photobiol. B. Biol. 12:285–294.CrossRefGoogle Scholar
  53. 53.
    Rothhaupt, K.O. 1991. Variations on the Zooplankton menu: A reply to the comment by Smith. Limnol. Oceanogr. 36:824–827.CrossRefGoogle Scholar
  54. 54.
    Setlow, R.B. 1974. The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis. Proc. Nat. Acad. Sci. 71:3363–3366.PubMedCrossRefGoogle Scholar
  55. 55.
    Siebeck, O. 1978. Ultraviolet tolerance of planktonic crustaceans. Verh. Internat. Verein. Limnol. 20:2469–2473.Google Scholar
  56. 56.
    Smith, R.C. 1989. Ozone, middle ultraviolet radiation and the aquatic environment. Photochem. Photobiol. 50:459–468.CrossRefGoogle Scholar
  57. 57.
    Smith, R.C., B.B. Prézelin, K.S. Baker, R.R. Bidigare, N.P. Boucher, T. Coley, D. Karentz, S. MacIntyre, H.A. Matlick, D. Menzies, M. Ondrusek, Z. Wan, and K.J. Waters. 1992. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959.PubMedCrossRefGoogle Scholar
  58. 58.
    Smith, V.H. 1991. Competition between consumers. Limnol. Oceanogr. 36:820–823.CrossRefGoogle Scholar
  59. 59.
    Sommer, U., Z.M. Gliwicz, W. Lampert, and A. Duncan. 1986. The PEG*- model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106:433–471.Google Scholar
  60. 60.
    Stich, H.B., and W. Lampert. 1984. Growth and reproduction of migrating and nonmigrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia. 61:192–196.CrossRefGoogle Scholar
  61. 61.
    Stolarski, R., R. Bojkov, L. Bishop, S. Zerefos, J. Staehelin, and J. Zawodny. 1992. Measured trends in stratospheric ozone. Science 256:342–349.PubMedCrossRefGoogle Scholar
  62. 62.
    Vinyard, G.L., and W.J. O’Brien. 1976. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J. Fish. Res. Board Can. 33:2845–2849.CrossRefGoogle Scholar
  63. 63.
    Williamson, C.E. 1993. Linking predation risk model with behavioral mechanisms: Identifying population bottlenecks. Ecology 74:320–331.CrossRefGoogle Scholar
  64. 64.
    Williamson, C.E., and N.M. Butler. 1987. Temperature, food, and mate limitation of copepod reproductive rates: Separating the effects of multiple hypotheses. J. Plankton Res. 9:821–836.CrossRefGoogle Scholar
  65. 65.
    Williamson, C.E., M.E. Stoeckel, and L.J. Schoeneck. 1989. Predation risk and the structure of freshwater Zooplankton communities. Oecologia 79:76–82.CrossRefGoogle Scholar
  66. 66.
    Worrest, R.C 1982. Review of literature concerning the impact of UV-B radiation upon marine organisms. In J. Calkins (ed.), The role of solar ultraviolet radiation in marine ecosystems. Series IV: Marine Sciences, New York: Plenum, pp.429–457.Google Scholar
  67. 67.
    Zaret, T.M. 1980. Predation and freshwater comunities. Ann Harbor, Michigan. 187 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Horacio E. Zagarese
    • 1
  • Craig E. Williamson
    • 1
  1. 1.Department of Earth and Environmental SciencesLehigh UniversityBethlehemUSA

Personalised recommendations