Advertisement

Prevention of Ultraviolet Radiation Damage in Antarctic Marine Invertebrates

  • Deneb Karentz
Conference paper
Part of the NATO ASI Series book series (volume 18)

Abstract

One aspect of investigating the ecological effects of ozone depletion on marine communities is to identify species-specific characteristics relative to strategies for dealing with prevention and repair of ultraviolet B (UV-B, 280–320 ran) damage. In adult marine invertebrates protection from UV-B exposure can be provided by either external coverings (e.g., teste, shell, body wall) or by the presence of UV-absorbing molecules (e.g., mycosporine-like amino acid compounds) or by both in cells and tissues. External coverings are not opaque to UV-B. Using biological dosimetry, penetration of UV-B wavelengths through the exteriors of adult invertebrate has been observed. In addition, selective partitioning of UV-absorbing compounds occurs in adult invertebrate tissues. The highest concentrations of these substances are found in ovaries and eggs. Planktonic larval stages receive higher UV exposures than benthic adults and have considerably less optical shielding. Since egg cells tend to have higher concentrations of UV-absorbing compounds than other body tissues, this may provide for increased protection of embryos and larvae during planktonic development.

Key words

Antarctic ozone depletion marine invertebrates plankton UV radiation References 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buckley, R.G., and H.J. Trodahl. 1987. Scattering and absorption of visible light by sea ice. Nature 326:867–869.CrossRefGoogle Scholar
  2. 2.
    Carreto, J.I., M.O. Carignan, G. Daleo, and S.G.d. Marco. 1990. Occurrence of mycosporine-like amino acids in the red tide dinoflagellate Alexandrium excavatum UV-photoprotective compounds? J. Plank. Res. 12:909–921.CrossRefGoogle Scholar
  3. 3.
    Chioccara, F., A.D. Gala, M.d. Rosa, E. Novelline, and G. Prota. 1979. Occurrence of two new mycosporine-like amino acids, mytilins A and B in the edible mussel, Mytilis galloprovincialis. Tetrahedron. Lett. 34:3181–3182.CrossRefGoogle Scholar
  4. 4.
    Chioccara, F., A.D. Gala, M.d. Rosa, E. Novelline, and G. Prota. 1980. Mycosporine amino acids and related compounds from the eggs of fishes. Bull. Soc. Chim. Belg. 89:101–1106.Google Scholar
  5. 5.
    Cutchis, P. 1974. Stratospheric ozone depletion and solarultraviolet radiation on earth. Science 184:13–19.PubMedCrossRefGoogle Scholar
  6. 6.
    Dunlap, W.C., and B.E. Chalker. 1986. Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs 5:155–159.CrossRefGoogle Scholar
  7. 7.
    Dunlap, W.C., B.E. Chalker, and W.M. Banaranayake. 1988. New sunscreening agents derived from tropical marine organisms of the Great Barrier Reef, Australia. Int. Patent Application Pub. #WO 86/02350.Google Scholar
  8. 8.
    Dunlap, W.C., B.E. Chalker, and J.K. Oliver. 1986. Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia, in. UV-B absorbing compounds. J. Exp. Mar. Biol. Ecol. 104:1–10.CrossRefGoogle Scholar
  9. 9.
    Dunlap, W.C., D.M. Williams, B. Chalker, and A. Banaszak. 1989. Biochemical photo-adaptation in vision: UV-absorbing pigments in fish eye tissues. Comp. Biochem. Physiol. 93B:601–607.Google Scholar
  10. 10.
    Farman, J.C., B.G. Gardiner, and J.D. Shanklin. 1985. Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction. Nature 315:207–210.CrossRefGoogle Scholar
  11. 11.
    Frederick, J.E., and H.E. Snell. 1988. Ultraviolet radiation levels during the Antarctic spring. Science 241:438–440.PubMedCrossRefGoogle Scholar
  12. 12.
    Grant, P.T., C. Middleton, P.A. Plack, and R.H. Thomson. 1985. The isolation of four amino-cyclohexenimines (mycosporines) and a structurally related derivative of cyclohexane-1:3-dione (gadusol) from the brine shrimp, Artemia. Comp. Biochem. Physiol. 80B:755–759.Google Scholar
  13. 13.
    Helbling, E.W., V. Villafañe, M. Ferrario, and O. Holm-Hansen. 1992. Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species. Mar. Ecol. Prog. Ser. 80:89–100.CrossRefGoogle Scholar
  14. 14.
    Hofmann, D.J. 1989. Direct ozone depletion in spring-time Antarctic lower stratospheric clouds. Nature 337:447–449.CrossRefGoogle Scholar
  15. 15.
    Hofmann, D.J., J.W. Harder, S.R. Rolf, and J.M. Rosen. 1987. Balloon-borne observations of the development and vertical structure of the Antarctic ozone hole in 1986. Nature 326:59–62.CrossRefGoogle Scholar
  16. 16.
    Ito, S., and S. Hirata. 1977. Isolation and structure of a mycosporine from the zoanthid Palythoa tuberculosa. Tetrahedron Lett. 28:2429–2430.CrossRefGoogle Scholar
  17. 17.
    Karentz, D. in press. Ultraviolet tolerance mechanisms in Antarctic marine organisms. In C.S. Weiler and P.A. Penhaie (eds.), Ultraviolet Radiation and Biological Research in Antarctica. American Geophysical Union. Washington, DC.Google Scholar
  18. 18.
    Karentz, D., J.E. Cleaver, and D.M. Mitchell. 1991. Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation exposure. J. Phycol. 27:326–341.CrossRefGoogle Scholar
  19. 19.
    Karentz, D., W.C. Dunlap, and I. Bosch. 1992. Distribution of UV-absorbing compounds in the Antarctic limpet, Nacella concinna. Antarctic J. U.S.Google Scholar
  20. 20.
    Karentz, D., and T. Gast, in press. Transmission of solar ultraviolet radiation through invertebrate exteriors. Antarctic J. U.S.Google Scholar
  21. 21.
    Karentz, D., and L.H. Lutze. 1990. Evaluation of biologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments. Limn. Ocean. 35:549–561.CrossRefGoogle Scholar
  22. 22.
    Karentz, D., F.S. McEuen, K.M. Land, and W.C. Dunlap. 1991. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar. Biol. 108:157–166.CrossRefGoogle Scholar
  23. 23.
    Kobayashi, J., H. Nakamura, and Y. Hirata. 1981. Isolation and structure of a UV-absorbing substance 337 from the ascidian Halocynthia roretzi. Tetrahedron Lett. 22:3001–3002.CrossRefGoogle Scholar
  24. 24.
    Krueger, A.J., M.R. Schoeberl, R.S. Stolarski, and F.S. Sechrist. 1988. The 1987 Antarctic ozone hole: a new record low. Geophys. Res. Lett. 15:1365–1368.CrossRefGoogle Scholar
  25. 25.
    Lubin, D., and J.E. Frederick. 1991. The ultraviolet radiation environment of the Antarctic Peninsula: the roles of ozone and cloud cover. J. Appl. Meterol. 30:478–493.CrossRefGoogle Scholar
  26. 26.
    Lubin, D., J.E. Frederick, C.R. Booth, T. Lucas, and D. Neuschuler. 1989. Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica. Geophys. Res. Lett. 16:783–785.CrossRefGoogle Scholar
  27. 27.
    Lubin, D., J.E. Frederick, and A.J. Krueger. 1989. The ultraviolet radiation environment of Antarctica: McMurdo Station during September-October 1987. J. Geophys. Res. 94:8491–8496.CrossRefGoogle Scholar
  28. 28.
    Mitchell, D.L., and D. Karentz. 1993. The induction and repair of DNA photodamage in the environment. In A.R. Young, L.O. Björn, J. Moan, and W. Nultsch (eds.), Environmental UV Photobiology. Plenum Press. New York. pp. 345–377.Google Scholar
  29. 29.
    Molina, M.J., and F.S. Rowland. 1974. Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249:810–812.CrossRefGoogle Scholar
  30. 30.
    Nakamura, H., J. Kobayashi, and Y. Hirata. 1981. Isolation and structure of a 330 nm UV-absorbing substance, asterina-330 from the starfish Asterina pectinifera. Chem. Lett. 1413–1414.Google Scholar
  31. 31.
    Shick, J.M., W.C. Dunlap, B.E. Chalker, A.T. Banaszak, and T.K. Rosenzweig. 1992. Survey of ultraviolet radiation-absorbing mycosporine-like amino acids in organs of coral reef holothuroids. Marine Ecol. Prog. Ser. 90:139–148.CrossRefGoogle Scholar
  32. 32.
    Shick, J.M., M.P. Lesser, and W.R. Stochaj. 1991. Ultraviolet radiation and photooxidative stress in zooxanthellate Anthozoa: The sea anemone Phyllodiscus semoni and the octocoral Clavulan a sp. Symbiosis 10:145–173.Google Scholar
  33. 33.
    Sivalingham, P.M., T. Ikcawa, Y. Yokohama, and K. Nisizawa. 1974. Distribution of a 334UV-absorb-ing substance in algae, with special regard of its possible physiological roles. Botan. Mar. 17:23–29.CrossRefGoogle Scholar
  34. 34.
    Smith, R.C., B.B. Prézelin, K.S. Baker, R.R. Bidigare, N.P. Boucher, T. Coley, D. Karentz, S. MacIntyre, H.A. Matlick, D. Menzies, M. Ondrusek, Z. Wan, and K.J. Waters. 1992. Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959.PubMedCrossRefGoogle Scholar
  35. 35.
    Solomon, S. 1990. Progress towards a quantitative understanding of Antarctic ozone depletion. Nature 347:347–354.CrossRefGoogle Scholar
  36. 36.
    Trodahl, H.J., and R.G. Buckley. 1990. Enhanced ultraviolet levels under sea ice during the Antarctic spring. Geophys. Res. Lett. 17:2177–2179.CrossRefGoogle Scholar
  37. 37.
    Tsujino, I., K. Yabe, and I. Sekikawa. 1980. Isolation and structure of a new amino acid, shinorine, from the red alga Chondrus yendoi Yamada et Mikami. Bot. Mar. 23:65–68.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Deneb Karentz
    • 1
  1. 1.Department of BiologyUniversity of San FranciscoSan FranciscoUSA

Personalised recommendations