Skip to main content

UV-B-Inducible and Constitutive Genes that Mediate Repair and Toleration Of UV-Damaged DNA in the Plant Arabidopsis Thaliana

  • Conference paper
Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere

Part of the book series: NATO ASI Series ((ASII,volume 18))

Abstract

Plant responses to UV-induced DNA damage are of particular interest because plants are exposed almost continuously to the sunlight on which they depend for energy and developmental signals. The small crucifer Arabidopsis thaliana is an ideal model plant for genetic and molecular biological studies of DNA-damage-repair/toleration (DRT) responses. We previously showed that Arabidopsis plants primarily used photoreaction to remove cyclobutane pyrimidine dimers (CPDs), the major UV photoproducts in DNA, from their genomes; excision repair of CPDs was about 5% as efficient. Arabidopsis photoreactivating enzyme (photolyase) levels are developmentally regulated (more activity in midlife than young plants), and inducible by UV treatment of plants.

To gain information about the range of DRT activities in Arabidopsis, and to obtain DRT gene probes for regulatory studies, we recently selected for Arabidopsis cDNAs, in an expression library, that partially corrected the phenotypes of E. coli mutants lacking repair/toleration activities. Of the six cDNAs isolated, the products of three—DRT 100, DRT111 and DRT112—appear to catalyze either strand-exchange or resolution steps of homologous recombination; in plants, these activities may mediate recombinational toleration of unrepaired damage. DRT101 and DRT102 may encode UV-specific excision repair activities. Four of the DNA sequences—DRT100, 101, 111 and 112—predict chloroplast-targeted proteins.

We now find levels of DRT100 and DRT101 mRNA to be increased three- to four-fold by UV irradiation of whole plants. DRT 100 and DRT 101 induction patterns differ from one another and from the pattern for the UV-inducible CHS gene (encodes the flavonoid-biosynthesis enzyme chalcone synthase): 1) all three genes are induced by UV light, only DRT 100 and DRT 101 by the DNA crosslinking agent Mitomycin C, and only DRT 100 by the alkylating agent methylmethane sulfonate; 2) CHS and DRT 101 mRNA levels are maximal immediately after a 2-h UV-B pulse, whereas DRT100 mRNA peaks 3-h later; 3) a UV-B pulse induces CAS mRNA maximally in 7-day-old plants, and much less in older plants, whereas DRT100 and DRT101 show higher inducibility at 14 days and 21 days. This last result, and the developmental pattern of photolyase expression, suggest that older Arabidopsis plants may rely more on DRT activities, and perhaps less on shielding by flavonoids, than younger ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramic, M., A.S. Levine, and M. Protic. 1991. Purification of an ultraviolet-inducible, damage-specific DNA-binding protein from primate cells. J. Biol. Chem. 266:22493–22500.

    PubMed  CAS  Google Scholar 

  2. Block, A., J.L. Dangl, K. Hahlbrock, and P. Schulz-Lefert. 1990. Functional borders, genetic fine structure, and distance requirements of cis elements mediating light responsiveness of the parsley chalcone synthase promoter. Proc. Natl. Acad. Sic. USA 87:5387–5391.

    Article  CAS  Google Scholar 

  3. Britt, A.B., J-J. Chen, and D. Mitchell. 1993. A UV-sensitive mutant of Arabidopsis thaliana is defective in the repair of pyrimidine (6–4) pyrimidinone dimers. (Submitted.)

    Google Scholar 

  4. Cerutti, H., H.Z. Ibrahim, and A.T. Jagendorf. 1993. Treatment of pea (Pisum sativum L.) protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related to Escherichia coli RecA. Plant Physiol. 102:155–163.

    Article  PubMed  CAS  Google Scholar 

  5. Cerutti, H., and A.T. Jagendorf. 1993. DNA strand- transfer activity in pea (Pisum sativum L.) chloro-plasts. Plant Physiol. 102:145–153.

    Article  PubMed  CAS  Google Scholar 

  6. Cerutti, H., M. Osman, P. Grandoni, and A.T. Jagendorf. 1992. A homologue of Escherichia coli RecA proteins in plastids of higher plants. Proc. Natl. Acad. Sic. USA 89:8068–8072.

    Article  CAS  Google Scholar 

  7. Chapell, J., and K. Hahlbrock. 1984. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature 311:76–78.

    Article  Google Scholar 

  8. Clark, A.J. 1971. Toward a metabolic interpretation of genetic recombination of E. coli and its phages. Ann. Rev. Microbiol. 25:437–464.

    Article  CAS  Google Scholar 

  9. Cole, G.M., D. Schild, S.T. Lovett, and R.K. Mortimer. 1987. Regulation of RAD54- and RAD52-lacZ gene fusions in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 7:1078–1084.

    PubMed  CAS  Google Scholar 

  10. Cox, J.L., and G.D. Small. 1985. Isolation of photo- reactivation-deficient mutant Chlamy-domonas. Mutat. Res. 146:249–255.

    PubMed  CAS  Google Scholar 

  11. Davis, K.R., and F.M. Ausubel. 1989. Characterization of elicitor-induced defense responses in suspension-cultured cells of Arabidopsis. Molecular Plant-Microbe Interactions 2:363–368.

    Article  Google Scholar 

  12. Dong, X., M. Mindrinos, K.R. Davis, and F.M. Ausubel. 1991. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. The Plant Cell 3:61–72.

    Article  PubMed  CAS  Google Scholar 

  13. Elledge, S.J., J.T. Mulligan, S.W. Raner, M. Spottswood, and R.W. Davis. 1991. YES: A multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. Natl. Acad. Sic. USA 88:1731–1735.

    Article  CAS  Google Scholar 

  14. Feinbaum, R.L., and F.M. Ausubel. 1988. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell. Biol. 8:1985–1997.

    PubMed  CAS  Google Scholar 

  15. Feinbaum, R.L., G. Storz, G., and F.M. Ausubel. 1991. High intensity and blue light regulated expression of chimeric chalcone synthase genes in transgemc Arabidopsis thaliana plants. Mol. Gen. Genet. 226:449–456.

    Article  PubMed  CAS  Google Scholar 

  16. Flavell, R. 1980. The molecular characterization and organization of plant chromosomal DNA sequences. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31:569–596.

    CAS  Google Scholar 

  17. Fornace, A.J. Jr. 1992. Mammalian genes induced by radiation: Activation of genes associated with growth control. Annu. Rev. Genet. 26:507–526.

    Article  PubMed  CAS  Google Scholar 

  18. Friedberg, E.C. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52:70–102.

    PubMed  CAS  Google Scholar 

  19. Hamilton, K.K., P.M.H. Kim, and P.W. Doetsch. 1992. A eukaryotic DNA glycosylase/lyase recog-nizingultravioletüght-inducedpyrimiälne dimers. Nature 356:725–728.

    Article  PubMed  CAS  Google Scholar 

  20. Herrlich, P., H. Ponta, and H.J. Rahmsdort. 1992. DNA damage-induced gene expression: Signal transduction and relation to growth factor signaling. Rev. Physiol. Biochem. Pharmacol. 119:187–223.

    PubMed  CAS  Google Scholar 

  21. Kubasek, W.L., B.W. Shirley, A. McKillop, H.M. Goodman, W. Briggs, and F.M. Ausubel. 1992. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings. The Plant Cell 4:1229–1236.

    Article  PubMed  CAS  Google Scholar 

  22. Li, J., T-M. Ou-Lee, R. Raba, R.G. Amundson, and R.L. Last. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell 5:171–179.

    Article  PubMed  CAS  Google Scholar 

  23. Liang, X., M. Dron, J. Schmid, R.A. Dixon, and C.J. Lamb. 1989. Developmental and environmental regulation of a phenylalanine ammonia-lyase-glucuronidase gene fusion in transgenic tobacco plants. Proc. Natl. Acad. Sciences USA 86:9284–9288.

    Article  CAS  Google Scholar 

  24. Lloyd, R.G. 1991. Conjugational recombination in resolvase-deficient ruvC mutants of Escherichia coli K-12 depends onrecG. J. Bacteriol. 173:5414–5418.

    PubMed  CAS  Google Scholar 

  25. Madura, K., S. Prakash, and L. Prakash. 1990. Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res. 18:771–778.

    Article  PubMed  CAS  Google Scholar 

  26. Meyerowitz, E.M. 1987. Arabidopsisthaliana. Ann. Rev. Genet. 21:93–111.

    Article  PubMed  CAS  Google Scholar 

  27. Meyerowitz, E.M. 1989. Arabidopsis, a useful weed. Cell 56:263–269.

    Article  PubMed  CAS  Google Scholar 

  28. Pang, Q., and J.B. Hays. 1990. UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol. 95:536–543.

    Article  Google Scholar 

  29. Pang, Q., and J.B. Hays. 1993. Stimulation by UV-B light and DNA-damaging chemicals of transcription of Arabidopsis DNA-damage-repair/tolera-tion (DRT) genes. (Submitted).

    Google Scholar 

  30. Pang, Q., and J.B. Hays. 1993. Two plant cDNAs from Arabidopsis thaliana that partially restore recombination proficiency and DNA-damage resistance to E. coli mutants lacking recombination-intermediate-resolution activities. Nucleic Acids Res. 1647–1653.

    Google Scholar 

  31. Pang, Q., J.B. Hays, and I. Rajagopal. 1992. A plant cDNA that partially complements Escherichia coli recA mutations predicts a polypeptide not strongly homologous to RecA proteins. Proc. Natl. Acad. Sic. USA 89:8073–8077.

    Article  CAS  Google Scholar 

  32. Pang, Q., J.B. Hays, I. Rajagopal, and T.S. Schaefer. 1993. Selection of Arabidopsis cDNAs that partially correct phenotypes of Escherichia coli DNA-damage-sensitive mutants and analysis of two plant cDNAs that appear to express UV-specific dark repair activities. Plant Mol. Biol. 22:411–426.

    Article  PubMed  CAS  Google Scholar 

  33. Peterson, T.A., L. Prakash, S. Prakash, M.A. Osley, and S.I. Reed. 1985. Regulation of CDC9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol. Cell. Biol. 5:226–235.

    PubMed  CAS  Google Scholar 

  34. Pleura, M. J. 1982. Specific-locus mutation assays in lea mays. Mutat. Res. 99:317–337.

    Google Scholar 

  35. Radany, E.H., and E.C. Friedberg. 1980. A pyrimidine dimer-DNA glycosylase activity associated with the v gene product of bacteriophage T4. Nature 286:182–184.

    Article  PubMed  CAS  Google Scholar 

  36. Riazuddin, S., and L. Grossman. 1977. Micrococcus luteus correndonucleases I: Resolution and purification of two endonucleases specific for DNA containing pyrimidine dimers. J. Biol. Chem. 252:6280–6286.

    PubMed  CAS  Google Scholar 

  37. Ruby, S.W., and J.S. Szostak. 1985. Specific Saccharomyces genes are expressed in response to DNA-damaging agents. Mol. Cell. Bio.5:75–84.

    CAS  Google Scholar 

  38. Sebastian, J., B. Kraus, and G.B. Sancar. 1990. Expression of the yeast PHR1 gene is induced by DNA-damaging agents. Mol. Cell. Biol. 10:4630–4637.

    PubMed  CAS  Google Scholar 

  39. Todo, T., H. Takemori, H. Ryo, M. Ihara, T. Matsunaga, O. Nikaido, K. Sato, and T. Nomura. 1993. Anew photoreactivating enzyme that specifically repairs ultraviolet light-induced (6–4) photoproducts. Nature 361:371–374.

    Article  PubMed  CAS  Google Scholar 

  40. Tsujimura, T., V.M. Maher, A.R. Godwin, R.M. Liskay, and J.J. McCormick. 1990. Frequency of intrachromosomal recombination induced by UV radiation in normally repairing and excision repair-deficient human cells. Proc. Natl. Acad. Sic. USA 87:1566–1570.

    Article  CAS  Google Scholar 

  41. Walker, G.C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48:60–93.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hays, J.B., Pang, Q. (1994). UV-B-Inducible and Constitutive Genes that Mediate Repair and Toleration Of UV-Damaged DNA in the Plant Arabidopsis Thaliana . In: Biggs, R.H., Joyner, M.E.B. (eds) Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere. NATO ASI Series, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78884-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78884-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78886-4

  • Online ISBN: 978-3-642-78884-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics