Advertisement

Modeling Present and Past Thermal Regimes in the Paris Basin: Petroleum Implications

  • J. M. Gaulier
  • J. Burrus
Part of the Special Publication of the European Association of Petroleum Geoscientists book series (3148, volume 4)

Abstract

The present-day heat flow density distribution along a E-W regional cross section in the Paris Basin is investigated by means of continuous temperature profiles analysis and thermal conductivity determinations. The shale-dominated Liassic strata have thermal gradients that are consistently higher (55–65 °C/km) than the carbonate-dominated Dogger and Lower Cretaceous strata (37–40 °C/km) or Upper Cretaceous chalk (31–34 °C/ km). IFP’s 2-D numerical model TEMISPACK is used to adjust the crustal heat flow and magnitude of regional hydrodynamics that best fit the observed thermal profiles. A good adjustment between observed and calculated temperatures is obtained, and indicates the following:
  • The present-day crustal heat flow varies laterally between 70 and 90 mW m-2 along the section studied. The variations are probably explained by substratum heterogeneities.

  • Vertical changes in the thermal gradients cannot entirely be explained by thermal conductivity contrasts between Liassic and Dogger/Cretaceous strata. An additional explanation is found by east-to-west regional circulations in active aquifers, mainly Dogger and Albian. The computed water flow seems compatible with estimated regional Darcy velocities found in the literature.

Extrapolation of the present thermal heat flow to the past reveals the following conclusions:
  • Data on Liassic source rock maturity and published fluid inclusions consistently indicate that the maximum temperatures were warmer (up to 30–40 °C in Liassic Triassic strata to the east of the basin) than at present.

  • Data on modeling kerogen maturity and fluid inclusions suggest that these higher temperatures were reached at the end of Cretaceous times. The cooling is attributed to several causes: Tertiary erosion to the east of the basin accounts for 10–15 °C, surface temperature decrease between Cretaceous and Tertiary for 15°C, and convective flow for 7–10 °C. The cooling could be more progressive if the uplift were more recent than considered here.

From the petroleum exploration point of view, it is interesting to notice that our data and our modeling results do not indicate significant variation of basement heat flow with time since the Upper Jurassic.

Keywords

Heat Flow Fluid Inclusion Thermal Gradient Thermal Profile Hydrogen Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubertin G, Benderitter Y. Cordier Y, Doillon F, Fabris H, Ga-ble R, Gaillard B, Ledoux E, de Marsill G (1987) Détermination expérimentale de la vitesse naturelle d’écoulement dans la nappe géothermique du Dogger de la région parisienne. Cull Soc Géol Fr 111; 5: 991–1000Google Scholar
  2. Brunet MF, Le Pichon X (1982) Subsidence of the Paris Basin. Geophys Res 87; B10:8547–8560CrossRefGoogle Scholar
  3. Burrus J, Kuhfuss A, Doligez B, Ungerer P (1991) Are numerical models useful in reconstructing the migration of hydrocarbons? A discussion based on the northern Viking Graben. In: Petroleum migration. England WA, Flett AJ (eds) Geol Soc Spec Publ 59: 89–109. Oxford Blackwell Scientific PublicationsGoogle Scholar
  4. Coleno B (1986) Diagraphies thermiques et distribution du champ de température dans le Bassin de Paris. Thèse, Univ Bretagne Occidentale, Brest, Spécialité Géosciences, 220 ppGoogle Scholar
  5. Demongodin L, Pinoteau B, Vasseur G, Gable R (1991) Thermal conductivity and well logs: a case study in the Paris Basin. GeophysJInt 105:675–691CrossRefGoogle Scholar
  6. Espitalié J, Marquis F, Sage L (1987 a) Organic geochemistry of the Paris Basin. In: Brooks J, Glennie K (eds) Petroleum geology of North-West Europe. Graham & Trotman, Lon-don,pp 71–86Google Scholar
  7. Espitalié J, Marquis F, Sage L, Barsony I (1987 b) Géochimie organique du Bassin du Paris. Rev Inst Fr Pétrole 42; 3:271–302Google Scholar
  8. Espitalié J, Maxwell JR, Chenet Y, Marquis F (1988) Aspects of hydrocarbon migration in the Paris Basin as deduced from organic geochemical survey. In: Advances in organic geochemistry 1987, Org. Geochem. vol 13, 1-3: pp 467–481Google Scholar
  9. Goy G (1979) Les “schistes carton” (Toarcien Inférieur) du Bassin de Paris, en affleurements et en sondages. Thèse de 3ième Cycle Univ P M Curie Spécialité Géologie, Paris VIGoogle Scholar
  10. Guilhaumou N (1993) Paleotemperatures inferred from fluid inclusions in diagenetic cements: implications for the thermal history of the ParisBasin. Eur J Mineral 5: 1217–1226Google Scholar
  11. Guilhaumou N, Gaulier JM (1991) Détermination de paléotempératures dans les roches mères du bassin de Paris. C R Acad Sci Paris 313; II: 773–780Google Scholar
  12. Guillocheau F (1991) Mise en évidence de grands cycles transgression-régression d’origine tectonique dans les sédiments mésozoïques du Bassin de Paris. C R Acad Sci Paris 312: II: 1587–1593Google Scholar
  13. Habicht JKA (1979) Paleoclimate, paleomagnetism and continental drift. AAPG Stud Geol 9Google Scholar
  14. Maget P (1983) Potentiel géothermique basse température en France. Rapp BRGM 83SGN375SPGGoogle Scholar
  15. Matray JM, Meunier A, Thomas M, Fontes JC (1989) Les eaux de formations du Trias et du Dogger du Bassin Parisien: histoire et effets diagénétiques sur les réservoirs. BCREP, Elf, vol 13, 2: 483–504Google Scholar
  16. Mégnien C (1980) Synthèse géologique du Bassin de Paris. Stratigraphie et paléogéographie (vol I). Atlas (vol II). Lexique des noms et des formations (vol III). Mém BRGM 101-102-103. BRGM, Orléans, FranceGoogle Scholar
  17. Mégnien C, Pomerol C (1980) Subsidence of the Paris Basin from the Lias to the Late Cretaceous. In: Dynamics of plate interior, Vol 1. Geological Society of America, Boulder, CO, pp 91–92CrossRefGoogle Scholar
  18. Mossmann JR (1987) Conditions physico-chimiques de réservoirs gréseux. Approche pétrologique, minéralogique et isotopique. Application aux grès rhétie du Bassin de Paris. Doctoral thesis, l’Université de Strasbourg, FranceGoogle Scholar
  19. Mossmann JR (1991) K-Ar dating of authigenic illite-smectite clay material: application to complex mixtures of mixed-layer assemblages. Clay Min 26:189–198CrossRefGoogle Scholar
  20. Pelet R (1985) Evolution quantitative des produits formés lors de l’évolution de la matière organique. Rev Inst Fr Pétrole 40; 5:551–562Google Scholar
  21. Smith L, Chapmann DS (1983) On the thermal effects of groundwater flow, 1. Regional scale systems. J Geophys Res 88 B: 593–608CrossRefGoogle Scholar
  22. Tissot B, Espitalié J (1975) L’évolution thermique de la matière organique des sédiments: applications d’une simulation numérique. Rev Inst Fr Pétrole 30; 5:743–777Google Scholar
  23. Tissot B, Durand B, Espitalié J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. Am Assoc Pet Geol Bull 58; 3:499–506Google Scholar
  24. Ungerer P, Burrus J, Doligez B, Chenet PY, Bessis F (1990) Bassin evaluation by integrated two-dimensionnal modelling of heat transfer, fluid flow, hydrocarbon generation and migration. Bull Am Assoc Pet Geol 74:309–335Google Scholar
  25. Vasseur G, Lucazeau F (1983) Bounds on paleotemperatures and paleoclimatic corrections. Zentralbl Geol Paleontol 1: 17–24Google Scholar
  26. Vasseur G, Demongodin L, Bonneville A (1993) Thermal modelling of fluid flow effects in thin-dipping aquifers. Geophys J Int112: 276–289CrossRefGoogle Scholar
  27. Wei HF (1990) Modélisation tridimensionnelle du transfert d’eau, de chaleur et de masse dans l’aquifère géothermique du Dogger dans le Bassin de Paris. Thèse de l’Ecole Nationale des Mines de Paris. Spécialité Hydrologie et Hydrogéologie Quantitative, 300 ppGoogle Scholar
  28. Wei HF, Ledoux E, Marsily G (1990) Regional modeling of groundwater and salt environmental tracers transport in deep aquifers in the Paris Basin. J Hydrol 120:341–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. M. Gaulier
  • J. Burrus

There are no affiliations available

Personalised recommendations