Skip to main content

Transfer Zone in the Southern Jura Thrust Belt (Eastern France): Geometry, Development, and Comparison with Analogue Modeling Experiments

  • Chapter
Hydrocarbon and Petroleum Geology of France

Abstract

The Jura thrust belt constitutes the arcuate leading edge of the French Alps, which was developed during the Neogene and forms a conventional thin-skinned fold-and-thrust belt, whose general orientation is NNE-SSW. It consists of a thin Mesozoic cover displaced towards the NW above a regional sole thrust located in the Upper Triassic evaporitic layers, during the Late Miocene — Early Pliocene Alpine phase. During the Late Eocene and Oligocene, this area was involved in a significant extensional tectonic phase which created basement topography that has been preserved below the decollement level. These basement highs contitute potential traps, as shown by recent boreholes where oil has been tested in the southern part of the belt. Reservoirs are in the sandstones of the Buntsandstein Formation (Early Triassic) and dolomites of the Muschelkalk Formation (Middle Triassic), and potential source rocks are believed to be coal measures of Stephanian or Autunian age. In the southern part of the belt, the frontal thrust of the Jura belt is laterally linked to the frontal thrusts of the Chartreuse massif, with an offset of up to about 55 km. This area is interpreted as a complex transfer zone, which accommodates the southern termination of the belt. Balanced serial cross sections and microtectonic analysis of this zone reveal a fold-and-thrust geometry without any significant strike-slip motion along external thrusts. This particular geometry is due to a local N 50–60 ° shortening, which is strongly oblique with respect to the regional shortening of the southern Jura belt (N 100 °), and to the Chartreuse massif shortening (N 110 °). We interpret this structural setup as the result of the conjugated effect of three parameters: (1) the lateral disappearance of the basal decollement level (main parameter), (2) the influence of thickness variations in the cover between the internal and external part of the belt (indentation), and (3) the local tectonic control by previous normal faults in the basement. According to these data, analogue modeling experiments were performed and analyzed by computerized X-ray tomography in order to validate our hypothesis and to constrain the boundary conditions that produced this transfer zone and controlled its evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arthaud F, Matte P (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right-lateral shear zone between the Appalachians and the Urals. Geol SocAmBull 88: 1305–1320

    Article  Google Scholar 

  • Ballard JF, Brun JP, Van Den Driessche J, Allemand P (1987) Propagation des chevauchements au-dessus des zones de décollement: modèles expérimentaux. C R Acad Sci Paris 305,11:1249–1253

    Google Scholar 

  • Bally AW, Gordy PL, Stewart GA (1966) Structure, seismic data and orogenic evolution of southern Canadian Rockies. Bull Can Pet Geol 14: 337–381

    Google Scholar 

  • Bergerat F (1985) Déformations cassantes et champs de contrainte tertiaires dans la plate-forme européenne. Thesis, Univ P et M Curie, Paris VI, 315 pp (unpublished)

    Google Scholar 

  • Bergerat F, Mugnie JL, Guellec S, Truffert C, Cazes M, Damotte B, Roure F (1990) Extensional tectonics and subsidence of the Bresse basin: an interpretation from ECORS data. In: Roure F, Heitzmann P, Polino R (eds) Deep structure of the Alps. Mém Soc Géol Fr Paris 156: Mem Soc Géol Suisse Zürich 1; Vol Spec Soc Geol Ital Roma 1: 145–156

    Google Scholar 

  • Bitterli P (1972) Erdölgeologische Forschungen im Jura. Bull Ver Schweiz Petrol Geol Ing 39, 95: 13–28

    Google Scholar 

  • Blanc G, Doligez B, Lajat D, Mascle A (1991) Evaluation du potentiel pétrolier des formations paléozoïques de la Bresse et de sa bordure jurassienne, France. Bull Soc Géol Fr 162, 2: 409–422

    Google Scholar 

  • Blondel T, Charollais J, Sambeth U, Pavoni N (1988) La faille du Vuache (Jura méridional): un exemple de faille à caractère polyphasé. Bull Soc Vaud Sci Nat 79, 2: 65–91

    Google Scholar 

  • Boyer SE, Elliott D (1982) Thrust systems. AAPG Bull 66: 1196–1230

    Google Scholar 

  • Buxtorf A (1916) Prognosen und Befunde beim Hauensteinbasis und Grenchenbergtunnel und die Bedeutung der letzteren für die Geologie des Juragebirges. Verh Naturforsch Ges Basel 27: 185–254

    Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appl Geophys 116: 615–626

    Article  Google Scholar 

  • Calassou S, Malavieille J (1990) Etude des zones de transfert dans les prismes d’accrétion océanique et les avant-pays des chaînes: modélisation analogique. Rapp final Univ Montpellier,IFP 38048

    Google Scholar 

  • Chauve P, Enay R, Fluck P, Sittler C (1980) Vosges, fossé Rhénan, Bresse, Jura. 26è CGI. Ann Sci Univ Besançon (4) 1: 81–114

    Google Scholar 

  • Chauve P, Martin J, Petitjean E, Sequeiros F (1988) Le chevauchement du Jura sur la Bresse. Données nouvelles et réinterprétation des sondages. Bull Soc Géol Fr (8) IV, 5: 861–870

    Google Scholar 

  • Colletta B, Ballard JF, Balé P, Bénard F, Letouzey J, Pinedo R (1990) Thrust propagation and non-cylindrical structures in small-scale models: kinematics and 3D analysis by X-ray tomography. Thrust tectonics 1990, London, April 4-6, Abstracts: 64

    Google Scholar 

  • Colletta B, Letouzey J, Pinedo R, Ballard JF, Balé P (1991) Computerized X-ray tomography analysis of sand-box models: examples of thin-skinned thrust systems. Geology 19,11: 1063–1067

    Article  Google Scholar 

  • Cornec JH (1983) Synthèse géologique du Jura et de la Bresse. Direction des Hydrocarbures, Service de Conservation des Gisements d’Hydrocarbures

    Google Scholar 

  • Dahlstrom CDA (1970) Structural geology in the eastern margin of the Canadian Rocky Mountains. Bull Can Pet Geol 18: 332–406

    Google Scholar 

  • Damotte B, Nicholich R, Cazes M, Guellec S (1990) Mise en oeuvre, traitement et présentation du profil plaine du PôMassif central. In: Roure F, Heitzmann P, Polino R (eds) Deep structure of the Alps. Mém Soc Géol Fr Paris 156: Mém Soc Géol Suisse Zürich 1; Vol Spec Soc Geol Ital Roma 1:145

    Google Scholar 

  • Davis D. Suppe J. Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88: 1153–1172

    Article  Google Scholar 

  • Davis DM. Engelder T (1985) The role of salt in fold-and-thrust belts. Tectonophysics 119: 67–88

    Article  Google Scholar 

  • Debrand-Passard S. Courbouleix S (1984) Synthèse géologique du Sud-Est de la France. Mém BRGM Fr 126. vol 2

    Google Scholar 

  • Enay R (1982) Notice explicative de la feuille Saint-Rambert-en-Bugey à 1/50000. BRGM, Carte géologique de la France à 1/50000.3230

    Google Scholar 

  • Guellec S. Mugnier JL, Tardy M, Roure F (1990a) Neogene evolution of the western Alpine foreland in the light of ECORS data and balanced cross section. In: Roure F, Heitzmann P, Polino R (eds) Deep structure of the Alps. Mém Soc Géol Fr Paris 156: Mém Soc Géol Suisse Zürich 1: Vol Spec Soc Geol Ital Roma 1: 65–76

    Google Scholar 

  • Guellec S. Lajat D, Mascle A. Roure F, Tardy M (1990b) Deep seismic profiling and petroleum potential in the western Alps: constraints with ECORS data, balanced cross sections and hydrocarbon modelling. In: Pinet B, Bois C (eds) The potential of deep seismic profiling for hydrocarbon exploration. Technip, Paris, pp 425–437

    Google Scholar 

  • Karner GD, Watts AB (1983) Gravity anomalies and flexure of the lithosphere. J GeophysRes88. B12: 449–477

    Google Scholar 

  • Lacassin R (1989) Plate-scale kinematics and compatibility of crustal shear-zones in the Alps. In: Coward MP, Dietrich D, Park G (eds) Alpine Tectonics, Geol Soc Spec Publ 45: 339–352

    Article  Google Scholar 

  • Laubscher HP (1977) Fold development in the Jura. Tectono-physics 37:337–362

    Article  Google Scholar 

  • Laubscher HP (1986) The eastern Jura: relations between thinskinned and basement tectonics. local and regional. Geol Rundsch 75. 3: 535–553

    Article  Google Scholar 

  • Lefavrais-Raymond A (1962) Contribution à Tétude géologique de la Bresse d’après les sondages profonds. Mém BRGM 16

    Google Scholar 

  • Letouzey J (1990) Fault reactivation, inversion and fold-and-thrust belt. In: Letouzey J (ed) Petroleum and tectonics in mobile belts. Technip, Paris, pp 101–127

    Google Scholar 

  • Lienhardt MJ (1984) Trias -puissance et façiès de la partie supérieure. planche T2. In: Debrand-Passard S et al. (eds) Synthèse géologique du Sud-Est de la France. Mém BRGM 126 Mandl G. Shippman GK (1981) Mechanical model of thrust sheet gliding and imbrication. In: McClay KR. Price NJ (eds) Thrust and nappe tectonics. Geol Soc Spec Publ 9: 79–97

    Google Scholar 

  • Maury RC. Varet J (1980) Le volcanisme tertiaire et quaternaire en France. In: Géologie de la France -26è CGI. coll.C7. Mém BRGM. Orléans 107: 137–159

    Google Scholar 

  • Mitra S (1990) Fault-propagation folds: geometry. kinematic evolution and hydrocarbon traps. AAPG Bull 74, 6: 921–945

    Google Scholar 

  • Mitra S, Namson J (1989) Equal-area balancing. Am J Sci 289: 536–599

    Article  Google Scholar 

  • Mugnier JL. Ménard G (1986) Le dévelopement du bassin mollasique suisse et Tévolution des Alpes externes: un modèle cinématique. Bull Cent Rech Expl Prod Elf Aquitaine Pau 10. 1:167–180

    Google Scholar 

  • Mulugeta G (1988) Modelling the geometry of Coulomb thrust wedges. J Struct Geol 10: 847–859

    Article  Google Scholar 

  • Philippe Y (1991) Etude structurale du Jura méridional (région d’Ambérieu-en-Bugey). Rapp IFP-ENSPM 38748

    Google Scholar 

  • Philippe Y. Specht M (1992) Lateral ramps and transfer zones in fold-and-thrust belts: geometry. development and comparison with analogue modelling experiments. EAPG 4th Conf. June 1-5. Abstr with Progr: 48–49

    Google Scholar 

  • Suppe J (1983) Geometry and kinematics of fault-bend folding. AmJSci 283:684–721

    Article  Google Scholar 

  • Thomas WA (1990) Controls of locations of transverse zones in thrust belts. Eclogae Geol Helv 83/3: 727–744

    Google Scholar 

  • Truffert C, Burg JP, Cazes M. Bayer R, Damatto B, Rey D (1990) Structures crustales sous le Jura et al Bresse: contraintes sismiques et gravimétriques le long des profils ECORS Bresse-Jura et Alpes II. In: Roure F, Heitzmann P, Polino R (eds) Deep structure of the Alps. Mém Soc Géol Fr Paris 156: Mém Soc Géol Suisse Zürich 1: Vol Spec Soc Geol Ital Roma 1: 157–164

    Google Scholar 

  • Wildi W. Blondel T. Charollais J, Jaquet JM, Wernli R (1991) Tectonique en rampe latérale à la terminaison occidentale de la Haute-Chaîne du Jura. Eclogae Geol Helv 84/1: 265–277

    Google Scholar 

  • Winnock E (1961) Résultats géologiques du forage Risoux 1. Bull Ver Schweiz Petrol Geol Ing 28, 74: 17–26

    Google Scholar 

  • Geological maps of the study area published by the Bureau de Recherches Géologiques et Minières (BRGM): Ambérieuen-Bugey, Belley, Bourg-en-Bresse, Chambéry, La Tour-du Pin. Montagnieu. Montmélian, Saint-Rambert-en-Bugey. Seyssel. Voiron (1/50000): Nantua, Saint Claude (1/80000)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Philippe, Y. (1994). Transfer Zone in the Southern Jura Thrust Belt (Eastern France): Geometry, Development, and Comparison with Analogue Modeling Experiments. In: Mascle, A. (eds) Hydrocarbon and Petroleum Geology of France. Special Publication of the European Association of Petroleum Geoscientists, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78849-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78849-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78851-2

  • Online ISBN: 978-3-642-78849-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics