The Pore-Forming Toxin Aerolysin: From the Soluble to a Transmembrane Form

  • F. Gisou van der Goot
  • J. Thomas Buckley
  • Franc Pattus
Part of the NATO ASI Series book series (volume 82)


Bacterial pore forming toxins are an interesting model to study protein-membrane interactions including post translational insertion of proteins into membranes. These toxins have the remarkable feature of existing in two states either a water soluble form, which is secreted by the producing cell and can diffuse towards the target cell, and a membrane-bound form which forms the final transmembrane pore. This change in environment most certainly implies a major conformational change in the protein. Different types of protein seem to cope with this problem in different ways.


Aeromonas Hydrophila Hydrophobic Patch Alpha Toxin Major Conformational Change Dime Dissociation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhakdi, S. and Tranum-Jensen, J. (1991) Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 733–751.Google Scholar
  2. Chen, B.-L. and King, J. (1991) Thermal unfolding pathway for the thermostable P22 tailspike endorhamnosidase. Biochemistry 30: 6260–6269.PubMedCrossRefGoogle Scholar
  3. Daily, O. P., Joseph, S. W., Coolbaugh, J. C. et al. (1981) Association of Aeromonas sobria with human infection. J. Clin. Microbiol. 13: 769–777.PubMedGoogle Scholar
  4. Dirr, H. W. and Reinemer, P. (1991) Equilibrium unfolding of class pi glutathione S-transferase. Biochem-Biophys-Res-Commun 180: 294–300.PubMedCrossRefGoogle Scholar
  5. Gittelman, M. S. and Matthews, C. R. (1990) Folding and stability of trp aporepressor from Escherichia coli. Biochemistry 29: 7011–7020.PubMedCrossRefGoogle Scholar
  6. Howard, S. P. and Buckley, J. T. (1982) Membrane glycoprotein receptor and hole forming properties of a cytolytic protein toxin. Biochemistry 21: 1662–1667.PubMedCrossRefGoogle Scholar
  7. Howard, S. P. and Buckley, J. T. (1985) Activation of the hole forming toxin aerolysin by extracellular processing. J. Bacteriol. 163: 336–340.PubMedGoogle Scholar
  8. Janda, J. M., Bottone, D. J., Sinner, C. V. and Calcaterra, D. (1984) Phenotype markers associated withgastrointestinal Aeromonas hydrophilaisolates from symptomatic children. J. Clin. Microbiol. 17: 588–591.Google Scholar
  9. Jiang, B. and Howard, S. P. (1991) Mutagenesis and Isolation of Aeromonas-HydrophilaGenes Which Are Required for Extracellular Secretion. J. Bacteriol. 173: 1241–1249.Google Scholar
  10. Lakey, J. H., Gonzalez, M. J., van der Goot F.G.. and Pattus, F. (1992) The membrane insertion of colicins. Febs Lett. 307: 26–9.PubMedCrossRefGoogle Scholar
  11. Lakey, J. H., Massotte, D., Heitz, F., Dasseux, J. L., Faucon, J. F., Parker, M. W. and Pattus, F. (1991) Membrane Insertion of the Pore-Forming Domain of Colicin-A-A Spectroscopic Study. Eur. J. Biochem. 196: 599–607.PubMedCrossRefGoogle Scholar
  12. Li, J. (1992) Bacterial toxins. Current Opinion in Structural Biology 2: 545–556.CrossRefGoogle Scholar
  13. Podack, E. R. and Tschopp, J. (1982) Circular polymerization of the ninth component of complement. Ring closure of the tubular complex confers resistance to detergent dissociation and to proteolytic degradation. J. Biol. Chem. 257: 15204–15212.PubMedGoogle Scholar
  14. Reece, L. J., Nichols, R., Ogden, R. C. and Howell, E. E. (1991) Construction of a synthetic gene for an R-plasmid -encoded dihydrofolate reductase and studies on the role of the N-terminus in the protein. Biochemistry 30: 10895–10904.PubMedCrossRefGoogle Scholar
  15. Selkoe, D. J., Ihara, Y. and Salazar, F. J. (1982) Alzheimer disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science 215: 1243–1245.PubMedCrossRefGoogle Scholar
  16. Tucker, A. D., Parker, M.W., Tsernoglou, D. and Buckley, J.T. (1990) Crystallization of a proform of aerolysin, a hole-forming toxin from Aeromonas hydrophila. J Mol Biol 212: 561–562.PubMedCrossRefGoogle Scholar
  17. van der Goot, F. G., Ausio, J., Wong, K. R., Pattus, F. and Buckley, J. T. (1993a) Dimerization stabilizes the pore-forming toxin aerolysin in solution. J. Biol. Chem. (in the press )Google Scholar
  18. van der Goot, F. G., Gonzalez-Manas, J. M., Lakey, J. H. and Pattus, F. (1991) A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354: 408–410.PubMedCrossRefGoogle Scholar
  19. van der Goot, F. G., Lakey, J. H. and Pattus, F. (1992) The molten globule intermediate for protein insertion or translocation through membranes. Trends in Cell Biology 2: 343–348.PubMedCrossRefGoogle Scholar
  20. van der Goot, F. G., Lakey, J. H., Pattus, F., Kay, C. M., Sorokine, O., Van Dorsselaer, A. and Buckley, T. (1992) Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: Identification of the site of proteolytic activation. Biochemistry 31: 8566–8570.PubMedCrossRefGoogle Scholar
  21. van der Goot, F. G., Wong, K. R., Pattus, F. and Buckley, J. T. (1993b) Oligomerization of the channel-forming toxin Aerolysin precedes its insertion into lipid bilayer. Biochemistry 32: 2636–2642.CrossRefGoogle Scholar
  22. Wilmsen, H. U., Buckley, J. T. and Pattus, F. (1991) Site-directed mutagenesis at histidines of aerolysin from Aeromonas hydrophila: a lipid planar bilayer study. Mol. Microbiol. 5: 2745–2751.Google Scholar
  23. Wilmsen, H. U., Leonard, K. R., Tichelaar, W., Buckley, J. T. and Pattus, F. (1992) The Aerolysin Membrane Channel Is Formed by Heptamerization of the Monomer. EMBO J 11: 2457–2463.PubMedGoogle Scholar
  24. Wilmsen, H. U., Pattus, F. and Buckley, J. T. (1990) Aerolysin, a hemolysin from Aeromonas hydrophila, forms voltage-gated channels in planar bilayers. J Membrane Biol 115: 71–81.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • F. Gisou van der Goot
    • 1
  • J. Thomas Buckley
    • 2
  • Franc Pattus
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany
  2. 2.Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaCanada

Personalised recommendations