Skip to main content

Co-translational Modification, Stability and Turnover of Eukaryotic Proteins

  • Conference paper

Part of the book series: NATO ASI Series ((ASIH,volume 82))

Abstract

Eukaryotic function is tightly controlled through the complex mechanisms that regulate transcriptional and translational events. These processes are variously augmented by co- and post-translational modifications that affect function, location and ultimately turnover for each protein. Among the least well understood aspects are stability, including the process of folding, and degradation of both normal and damaged proteins. Since proteolytic destruction of proteins is as important as synthesis in determining the level of a biological activity, it represents a major cellular activity whose dissection is essential for the full appreciation of the regulation of eukaryotic cell function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arfin SM and Bradshaw RA (1988) Co-translational processing and protein turnover in eukaryotic cells. Biochemistry 27: 7979–7984.

    Article  PubMed  CAS  Google Scholar 

  • Bachmair A, Finley D and Varshaysky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234: 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Baker RT and Varshaysky A (1991) Inhibition of the N-end rule pathway in living cells. Proc. Natl. Acad. Sci. USA 88: 1090–1094.

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, Wunning I. and Varshaysky A (1990) The recognition component of the N-end rule pathway. EMBO J. 9: 3179–3189.

    PubMed  CAS  Google Scholar 

  • Ben-Bassat A, Bauer K, Chang S-Y, Myambo K, Boosman A and Chang, S (1987) Processing of the initiator methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J. Bacteriol. 169: 751–757.

    PubMed  CAS  Google Scholar 

  • Boissel J-P, Kaspar TJ and Bunn HF (1988) Co-translational amino-terminal processing of cytosolic proteins. Cell-free expression of site-directed mutants of human hemoglobin. J. Biol. Chem. 263: 8443–8449.

    PubMed  CAS  Google Scholar 

  • Chang YH, Teichert U and Smith JA (1990) Purification and characterization of a methionine aminopeptidase from Saccharomyces cerevisiae. J. Biol. Chem. 265: 19892–19897.

    PubMed  CAS  Google Scholar 

  • Chang YH, Teichert U and Smith JA (1992) Molecular cloning, sequencing, deletion, and overexpression of a methionine aminopeptidase gene from Saccharomyces cerevisiae. J. Biol. Chem. 267: 8007–8011.

    PubMed  CAS  Google Scholar 

  • Ciechanover A, DiGiuseppe JA, Bercovich B, Orian A, Richter JD, Schwartz AL and Brodeur GM (1991) Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88: 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover A, Ferber S, Ganoth D, Elias S, Hershko A and Arfin SM (1988) Purification and characterization of arginyl-tRNA protein transferase from rabbit reticulocytes. Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway. J. Biol. Chem. 263: 11155–11167.

    PubMed  CAS  Google Scholar 

  • Dice JF (1987) Molecular determinants of protein half-lives in eukaryotic cells. FASEB J. 1: 349–357.

    PubMed  CAS  Google Scholar 

  • Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS and Varshaysky A (1989) Universality and structure of the N-end rule. J. Biol. Chem. 264: 16700–16712.

    PubMed  CAS  Google Scholar 

  • Greene LA and Tischler AS (1982) PC12 pheochromocytoma cultures in neurobiological research. Adv. Cell. Neurobiol 3: 373–414.

    CAS  Google Scholar 

  • Heller H and Hershko A (1990) A ubiquitin-protein ligase specific for type III protein substrates. J. Biol. Chem. 765: 6532–6535.

    Google Scholar 

  • Hershko A and Ciechanover A (1992) The ubiquitin system for protein degradation. Ann. Rev. Biochem. 61: 761–807.

    Article  PubMed  CAS  Google Scholar 

  • Hondermarck, H, Sy J, Bradshaw RA, and Arfin SM (1992) Dipeptide inhibitors of ubiquitinmediated protein turnover prevent growth factor-induced neurite outgrowth in rat pheochromocytoma PC12 cells. Biochem. Biophys. Res. Comm. 189: 280–288.

    CAS  Google Scholar 

  • Huang S, Elliott RC, Lui PS, Koduri RK, Weickmann JL, Lee JH, Blair LC, Ghosh-Dastidar P, Bradshaw RA, Bryan KM, Einarson B, Kendall RL, Kolacz KH and Saito K (1987) The specificity of co-translational amino-terminal processing of proteins in yeast. Biochemistry 26: 8242–8246.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch S, Seufert W and Hauser HP (1991) Genetic analysis of the ubiquitin system. Biochim. Biophys. Acta 1089: 127–139.

    CAS  Google Scholar 

  • Kendall RL (1992) The isolation and characterization of porcine liver methionine aminopeptidase. Ph.D. Thesis, University of California, Irvine.

    Google Scholar 

  • Kendall RL and Bradshaw RA (1992) Isolation and characterization of the methionine aminopeptidase from porcine liver responsible for the co-translational processing of proteins. J. Biol. Chem. 267: 20667–20673.

    PubMed  CAS  Google Scholar 

  • Krishna RG and Wold F (1992) Specificity determinants of acylaminoacyl-peptide hydrolase. Protein Sci. 1: 582–589.

    Article  PubMed  CAS  Google Scholar 

  • McGrath JP, Jentsch S and Varshaysky A (1991) UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10: 227–236.

    PubMed  CAS  Google Scholar 

  • Miller CG, Strauch KL, Kukral AM, Miller JL, Wingfield PT, Mazzei GJ, Werlen RC, Graber P and Movva NR (1987) N-terminal methionine-specific peptidase in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 84: 2718–2722.

    Article  PubMed  CAS  Google Scholar 

  • Reiss Y, Kaim D and Hershko A (1988) Specificity of binding of NH2-terminal residue of proteins to ubiquitin-protein ligase. Use of amino acid derivatives to characterize specific binding sites. J. Biol. Chem. 263: 2693–2698.

    PubMed  CAS  Google Scholar 

  • Rivett AJ (1993) Proteasomes: Multicatalytic proteinase complexes. Biochem. J. 291: 1–10.

    PubMed  CAS  Google Scholar 

  • Roderick SL and Matthews BW (1993) Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: A new type of proteolytic enzyme. Biochemistry 32: 3907–3912.

    Article  PubMed  CAS  Google Scholar 

  • Tobias JW, Schrader TE, Rocap G and Varshaysky A (1991) The N-end rule in bacteria. Science 254: 1374–1377.

    Article  PubMed  CAS  Google Scholar 

  • Varshaysky A (1992) The N-end rule. Cell 69: 725–735.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bradshaw, R.A., Sy, J., Stewart, A.E., Kendall, R.L., Hondermarck, H., Arfin, S.M. (1994). Co-translational Modification, Stability and Turnover of Eukaryotic Proteins. In: Op den Kamp, J.A.F. (eds) Biological Membranes: Structure, Biogenesis and Dynamics. NATO ASI Series, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78846-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78846-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78848-2

  • Online ISBN: 978-3-642-78846-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics