Röntgenstrahlen in der Chemie

  • Hartmut Fueß

Zusammenfassung

Kaum eine andere einzelne Methode hat mehr zum Verständnis des räumlichen Aufbaus kristalliner Materie beigetragen wie die Röntgen-beugung. So lieferte die Röntgenstrukturanalyse an Einkristallen die sichersten, genauesten und umfangreichsten Daten chemischer Strukturen. Aus diesen Daten werden Größen wie die Abstände und Winkel zwischen Atomen in Molekülen und Kristallen, oder die Konfiguration und Konformation von Molekülen erhalten. Gleichzeitig liefern diese Daten die Basis für die Rechnungen der theoretischen Chemiker, die diese der Molekülmechanik und -dynamik zugrunde legen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bijvoet JM, Peerdeman AF, Van Bommel AJ (1951) Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168:271–272.CrossRefGoogle Scholar
  2. Bragg WH, Bragg WL (1915) Seven papers by WHB and WLB from the period 1912/14 were reprinted in German translation. Z Artorg Allgem Chem 90:153–296.Google Scholar
  3. Bragg WL (1913) The structure of some crystals as indicated by their diffraction of x-rays. Proc Roy Soc A 89:248–277.CrossRefGoogle Scholar
  4. Brill R (1967) Determination of electron distribution in crystals by means of X-rays. Solid State Phys 20:1–35.CrossRefGoogle Scholar
  5. Coppens P, Hall MB (eds) (1982) Electron distribution and the chemical bond. Plenum, New York.Google Scholar
  6. Crowfoot D, Bunn CW, Rogers-Low BW, Turner-Jones A (1949) The chemistry of penicillin. Princeton University Press, Princeton, pp 310–367.Google Scholar
  7. Ewald PP (ed) (1962) Fifty years of x-ray diffraction. NVA Oostholk’s uitgeversmaatschappij, Utrecht.Google Scholar
  8. Friedrich W, Knipping P, Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen. Bayr Akad Wiss 303:322.Google Scholar
  9. Fuess H, Bats JW, Cruickshank DWJ, Eisenstein M (1985) Comparison of theoretical and experimental deformation densities in S-O bonds. Angew Chem Int Ed Eng 24:509–510.CrossRefGoogle Scholar
  10. Goldschmidt VM (1926) Geochemische Verteihungsgesetze der Elemente, Bd VIII: Gesetze der Kristallochemie. Skrifter Norske Videnskaps-Akademie, Oslo.Google Scholar
  11. Guinier A, Fournet G (1955) Sinall angle scattering of X-rays. Wiley, New York.Google Scholar
  12. Heilbronner E, Dunitz JD (1993) Reflections on symmetry in chemistry and elsewhere. Helvetica Chimica Acta, Basel; VCH, Weinheim.Google Scholar
  13. Hildebrandt G (1993) The discovery of the diffraction of x-rays in crystals — A historical review, Cryst Res Technol 28:747–766.CrossRefGoogle Scholar
  14. Kräfschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358.CrossRefGoogle Scholar
  15. Kratky O, Lagger P (1987) X-ray small angle scattering. Encyclopedia of physical science and technology. Academic Press, London, pp 693–742.Google Scholar
  16. Lehn JM (1988) Supramolekulare Chemie-Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag). Angew Chem 100:91–116.CrossRefGoogle Scholar
  17. Liebau F (1985) Structural chemistry of silicates — (Structure bonding and classification). Springer, Berlin Heidelberg New York Tokyo.Google Scholar
  18. Löchner U, Pennartz PU, Miehe G, Fuess H (1993) Synchrotron powder diffractometry at Hasylab (Doris) reviewed. Z Kristallogr 204:1–41.CrossRefGoogle Scholar
  19. Luger P, Andre C, Rudert R, Zobel D, Knöchel A, Krause A (1992) X-ray structure of 18-crown-6-KClO4 at room temperature and 20K. Acta Cryst B 48:33–37.CrossRefGoogle Scholar
  20. Nockolds CK, Ramaseshan S, Waters TNM, Waters JM, Hodgkin DC (1967) Structure of monocarboxylic acid derivative of vitamin B12. Nature 214:129–133.PubMedCrossRefGoogle Scholar
  21. Pauling L (1962) Die Natur der chemischen Bindung. Verlag Chemie, Weinheim.Google Scholar
  22. Penrose R (1979) Pentaplexity. A class of non periodic tilings of the plane. Math Intelligencer 2:32–37.CrossRefGoogle Scholar
  23. Reiser HS, Rooksby HP, Wilson AJC (1955) The powder and fibre methods in polymer and biological research. X-Ray Diffraction Ch 26:533.Google Scholar
  24. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71.CrossRefGoogle Scholar
  25. Roth G (1993) Kristallstrukturen und Kristallchemie van der Waals-gebundener Fullerene. Habilitationsschrift, Universität Marburg.Google Scholar
  26. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767.CrossRefGoogle Scholar
  27. Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational and no translational symmetry. Phys Rev Lett 53:1951–1953.CrossRefGoogle Scholar
  28. Steinborn T, Miehe G, Wiesner J et al. (1994) Twinning of YBa2Cu3O7 thin films on different substrates and modification by irradiation. Physica C 220:219–226.CrossRefGoogle Scholar
  29. Steurer W (1990) The structure of quasicrystals. Z Kristallogr 190:179–234.CrossRefGoogle Scholar
  30. Vogel W, Höland W (1987) The development of bioglass ceramics for medical applications. Angew Chem Int Ed Engl 26:527–544.CrossRefGoogle Scholar
  31. Weiss A, Witte H (1983) Kristallstruktur und chemische Bindung. Verlag Chemie, Weinheim.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Hartmut Fueß

There are no affiliations available

Personalised recommendations