Advertisement

Effects of the Injection of Droplets on a Stationary Shock Wave in a Nozzle

  • F. Utheza
  • R. Saurel
  • E. Daniel
  • J. C. Loraud
Conference paper

Abstract

A numerical simulation of the flow of gases through a converging-diverging nozzle, where droplets are injected in a given section of the divergent, is presented. The two-dimensional equations are solved by a TVD scheme where fluxes are computed by using a new Riemann solver for the dispersed phase, and an exact Riemann solver for the gas phase equations. The behaviour of the initial shock wave as a function of the particles injection location is examined in this paper.

Key words

Nozzle flow Droplet injection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang IS (1980) One and two-phase nozzle flows. AIAA Journal 18: 1455–1461CrossRefADSGoogle Scholar
  2. Daniel E, Loraud JC, Larini M (1992) Influence de l’injection de gouttes d’eau dans de la vapeur d’eau en écoulement dans une tuyère. Intl. Journal of Heat and Mass Transfer 36, 6: 1619–1632CrossRefGoogle Scholar
  3. Daniel E, Larini M, Loraud JC, Porterie B (1992) A numerical simulation of injection of droplets in a compressible flow. AIAA Paper 92–2929, Nashville, TNGoogle Scholar
  4. Forestier A (1992) Second order scheme for Euler equations in bidimensional unstructured geometries. Submitted to J. Comp. Phys.Google Scholar
  5. Gottlieb J J, Groth CPT (1988) Assessment of Riemann Solvers for unsteady one-dimensional inviscid flows of perfect gases. J. Comp. Phys. 78: 437–458CrossRefMATHADSGoogle Scholar
  6. Roe PL (1981) Some contribution to the modelling of discontinuous flows. Proc. AMS-SIAM Seminar, San DiegoGoogle Scholar
  7. Saurel R, Daniel E, Loraud JC (1993) Two-phase flows: Second order schemes and boundary conditions. Submitted to AIAA JournalGoogle Scholar
  8. Sommerfeld M (1987), Numerical simulation of supersonic two-phase gas-particles flow. In: Grönig H (ed) Proc. 16th Intl. Symposium of Shock Tubes and Waves, pp. 235–241Google Scholar
  9. Van Leer B (1979) Toward the ultimate conservative scheme V. A second-order sequel to Godunov’s method. J. Comp. Phys. 32: 101–136CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • F. Utheza
    • 1
  • R. Saurel
    • 1
  • E. Daniel
    • 1
  • J. C. Loraud
    • 1
  1. 1.I.U.S.T.I./ S.E.T.T.- Equipe Ecoulements Diphasiques et Réactifs - Case 321 - URA CNRS 1168Université de Provence - Centre de Saint JérômeMarseille Cedex 20France

Personalised recommendations