Oblique Interaction of Strong Solar Wind Discontinuities in the Vicinity of the Terrestrial Magnetosphere

  • E. A. Pushkar
  • S. A. Grib
Conference paper


The interaction of a solar wind shock perturbation (fast shock wave or rotational discontinuity) with the bow shock wave front upstream from the magnetosphere of the Earth is considered in the ideal MHD approximation. It is shown that as the shock perturbation propagates along the bow front the character of the flow is qualitatively and quantitatively modified, being asymmetrical on the flanks. The effect of the interplanetary magnetic field orientation and the obliqueness of the arriving solar wind shock perturbation on this process is studied. It is found that there is some kind of similarity with the kinetic description of the bow front as partly quasiperpendicular and partly quasiparallel.


Solar wind shock waves Earth’s bow shock Rotational discontinuity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barmin AA, Pushkar’ EA (1990) Oblique interaction of Alfvén and contact discontinuities in magnetohydrodynamics. Izv. Akad. Nauk SSSR, Mech. Zhidk. Gaza 1: 131Google Scholar
  2. Barmin AA, Pushkar’ EA (1991) Shock waves intersection in magnetohydrodynamics. Izv. Akad. Nauk SSSR, Mech. Zhidk. Gaza 3: 132MathSciNetGoogle Scholar
  3. Dryer M (1975) Interplanetary shocks waves: Recent developments. Space Sci. Rev. 17: 277CrossRefADSGoogle Scholar
  4. Gosling JT, McComas DJ, Phillips JL, Bame SJ (1991) Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. 96: 7831CrossRefADSGoogle Scholar
  5. Grib SA, Brunelli BE, Dryer M, Shen WW (1979) Interaction of interplanetary shock waves with the bow shock - magnetopause system. J. Geophys. Res. 84: 5907CrossRefADSGoogle Scholar
  6. Grib SA (1982) Interaction of non-perpendicular/parallel solar wind shock waves with the Earth’s magnetosphere. Space Sci. Rev. 32: 43CrossRefADSGoogle Scholar
  7. Hundhauzen AJ (1972) Coronal expansion and solar wind. Springer, New YorkCrossRefGoogle Scholar
  8. Neubauer FM (1975) Nonlinear oblique interaction of interplanetary tangential discontinuities with magnetogasdynamies shocks. J. Geophys. Res. 80: 1213CrossRefADSGoogle Scholar
  9. Pushkar’ EA (1978) On the oblique magnetohydrodynamic shock waves. Izv. Akad Nauk SSSR, Mech. Zhidk. Gasa 4: 106Google Scholar
  10. Pushkar’ EA (1979) Generalized polars for the plane-polarized stationary self-similar flows in magnetohydrodynamics. Izv. Akad Nauk SSSR, Mech. Zhidk. Gasa 3: 103Google Scholar
  11. Pushkar’ EA, Barmin AA, Grib SA (1991) Investigation in MHD- approximation of impingement of a solar wind shock wave on the Earth’s bow shock. Geomagnetizm i Aeronomiya 31: 522ADSGoogle Scholar
  12. Russell CT, Greenstadt EW (1979) Initial ISEE observations of the bow shock. Nuovo Cim. 2C: 737CrossRefADSGoogle Scholar
  13. Wedeken U, Voelker H, Knott K, Lester M (1986) SSC-excited pulsations recorded near Noon on GEOS 2 and on the ground (CDAW 6), J. Geophys. Res. 91: 3089CrossRefADSGoogle Scholar
  14. Zhuang HC, Russell CT, Smith EJ, Gosling JT (1981) Three- dimensional interaction of interplanetary shock waves with the bow shock and magnetopause: A comparison of theory with ISEE observations. J. Geophys. Res. 86: 5990ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. A. Pushkar
    • 1
  • S. A. Grib
    • 2
  1. 1.General and Applied Mathematics DepartmentMASI (VTUZ-ZIL)MoscowRussia
  2. 2.Central Astronomical Observatory of RAS (Pulkovo)Saint-PetersburgRussia

Personalised recommendations