Nonequilibrium Hypersonic Flow Around a Blunt Body

  • E. Schall
  • D. Zeitoun
Conference paper


The laminar, viscous, nonequilibrium flow around an axisymmetric blunt body has been computed. A fully implicit finite difference scheme of second order was used. The air was considered as a reactive mixture of the five species N2, O2, NO, N, O, in which the diatomic species, N2, O2 are in vibrational nonequilibrium. A range of Mach numbers from 14 to 18 has been investigated. The numerical results have been compared with those obtained by other workers and are in agreement with ballistic range data concerning the standoff shock distance at M = 15.35.

Key words

Hypersonic flows Chemical and vibrational nonequilibrium Blunt body 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Candler G, MacCormack RW (1988) The computation of hypersonic ionized flows in thermal and chemical nonequilibrium. AIAA Paper 88–0511Google Scholar
  2. Druguet MC (1992)Contribution à l’étude des écoulements Euleriens hypersoniques en deséquilibre thermochimique. Thèse de Doctorat, Université de Provence, MarseilleGoogle Scholar
  3. Flament C (1990) Ecoulements de fluides visqueux en déséquilibre chimique et vibrationnel, Thèse de Doctorat, Paris V IGoogle Scholar
  4. Jameson A, Schimdt W (1981) Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping scheme. AIAA Paper 81–1259Google Scholar
  5. Josyula E, Shang JS (1992) Computation of hypersonic flowfield in thermal and chemical nonequilibrium. AIAA Paper 92–2874Google Scholar
  6. Lobb R (1964) Experimental measurement of shock detachment distance on sphere in air at hypervelocity. In: Wilson WC (ed) High temperature aspects of hypersonic flow, Pergamon Press, NY, pp. 519–527Google Scholar
  7. MacCormack RW (1985) Current status of numerical solution of the Navier-Stokes equation. AIAA Paper 85–0032Google Scholar
  8. Park C (1989) Assessment of a two-temperature kinetic model for ionizing air. AIAA Paper 87–1574Google Scholar
  9. Stupochenko YV, Losev SA, Osipov AI (1967) Relaxation in Shock Waves. Springer-Verlag, NY, pp. 259–322Google Scholar
  10. White FA (1974) Viscous Fluid Flow. McGraw-Hill, NY, pp 28–36MATHGoogle Scholar
  11. Zeitoun D (1991) Chemical and vibrational nonequilibrium flowfields. Journal of Comp. Methods in Applied Mechanics and Eng. 90: 687–692CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. Schall
    • 1
  • D. Zeitoun
    • 1
  1. 1.Lab. I.U.S.T.I./S.E.T.T. (U.R.A CNRS 1168)Dept. M.H.E.Q Université de ProvenceMarseille Cedex 20France

Personalised recommendations