Advertisement

Experimental Verification of Real Gas Effects in High-Enthalpy Flows

  • G. Eitelberg
Conference paper

Abstract

This paper deals with the possibilities to study the effects of oxygen and nitrogen dissociation in experiments where this reaction occurs over a sufficiently short distance in stagnating flows. The scope of this paper does not cover the real gas effects of combustion in high enthalpy flows. First, the capabilities of the various types of experimental facilities for generating high enthalpy flows will be discussed. Samples of aerothermodynamic tests performed in these facilities will be discussed. Some of these experiments are reconfirmations of experiments T4 where the difference lies in the new instrumentation applied to the old flow problems, others are new studies of external aerothermodynamies like the experiments on shock/shock interactions. The significance of the dissociation effects in the above experiments is pointed out.

Key words

Real gas effects High enthalpy Wind tunnels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auweter-Kurtz M, Habinger H, Laure S, Messerschmid E, Rock W, Tubanos N (1991) The IRS plasma wind tunnels for the investigation of thermal protection materials for reentry vehicles. Proc. 1st European Symposium: Aerothermodynamics for space vehicles, ESTEC, Noordwijk, The NetherlandsGoogle Scholar
  2. Beck WH, Eitelberg G, Mclntyre TJ, Baird JP, Lacey J, Simon M (1991) The high enthalpy shock tunnel in Gottingen (HEG). In: Takayama K (ed) Proc. 18th ISSW, Sendai, Japan pp 677–682Google Scholar
  3. Beck WH, Hanneman K (1993) High enthalpy wind tunnel instrumentation. CNES-Report, Activity ES 7 (1992)Google Scholar
  4. Beck WH, Müller M, Wollenhaupt M (1993) Application of spectroscopic diagnostic techniques to studies on HEG: preparatory LIF work and emission spectroscopy results. Proc. 15th ICIASF, Saint-Louis, FranceGoogle Scholar
  5. Becker E (1965) Gasdynamik. Teubner, StuttgartMATHGoogle Scholar
  6. Brück S, Brenner G, Kortz S (1993) Numerical simulations of shock-shock interactions in non-equilibrium flow. DLR-IB 221-93 A 09, DLR GermayGoogle Scholar
  7. Burtschell Y, Brun R, Zeitoun D (1991) Two dimensional numerical simulation of the Marseille University free piston shock tunnel - TCM2. In: Takayama K (ed) Proc. 18th ISSW, Sendai, Japan pp 583–590Google Scholar
  8. On the computation of shock shapes in nonequilibrium hypersonic flows. AIAA Paper 89–0312Google Scholar
  9. Chanetz B, Coët M-C, Nieout D, Pot T, Brossand P, François G, Masson A (1992) Nouveaux moyens d’essais hypersoniques dévelppés a L’ONERA. AGARD Conf. Proc. 514, Theoretical and experimental methods in hypersonic flowsGoogle Scholar
  10. Deiwert SG (1992) Issues and approaches to develop validated analysis tools for hypersonic flows: one perspective. AGARD Conf. Proc. 514, Theoretical and experimental methods in hypersonic flowsGoogle Scholar
  11. Eitelberg G, Mclntyre TJ, Beck WH, Lacey J (1992) The high entahlpy shock tunnel in Göttingen. AIAA Paper 92–39 42Google Scholar
  12. Erdes J, Tamaguo J, Bakos R (1989) Hypervelocity real gas capabilites of GASL’s HYPULSE facility. In: Rogers RC (ed) Workshop on the application of pulse facilites to hypervelocity combustion simulation, NASP Workshop Publication 1008, NASA-LRCGoogle Scholar
  13. Gai SL, Mudford NT (1992) Heat flux and shock shape measurements on a aeroassist flight experiment model in a high enthalphy free piston shock tunnel. AIAA Paper 92–3407Google Scholar
  14. Gai SL, Reynolds NT, Ross C, Baird JP (1989) Measurements of heat transfer in separated high enthalpy dissociated laminar hypersonic flow behind a step. J. Fluid Mech. 199: 541–561CrossRefADSGoogle Scholar
  15. Gai SL, Sandeman RJ, Lyons P, Kilpin D (1984) Shock shape over a sphere cone in hypersonic high enthalpy flow. AIAA Journal 22: 7CrossRefGoogle Scholar
  16. Grasso F, Bellucci V (1992) Thermal and chemical nonequilibrium hypersonic flow computations. AGARD Conf. Proc. 514. Theoretical and experimental methods in hypersonic flowsGoogle Scholar
  17. Grönig H (1991) Shock tube application: High enthalpy European wind tunnels. In: Takayama K (ed) Proc. 18th ISSW, Sendai, Japan pp 3–16Google Scholar
  18. Hannemann K (1990) Design of a axisymmetric contoured mozzle for the HEG. DLR-FB 90–04Google Scholar
  19. Hannemann K, Brenner G, Brück S (1993) Numerical simulation of reacting flows related to the HEG. These ProceedingsGoogle Scholar
  20. Hornung HG (1972) Non-Equilibrium dissociating introgen flow over shperes and circular cylinders. J. Fluid Mech. 53: 149CrossRefMATHADSGoogle Scholar
  21. Hornung HG (1991) Class notes: Ae 234. Lecture Notes, Course given at CALCIT, Calif. Inst, of Technology, PasadenaGoogle Scholar
  22. Hornung HG (1992) Performance data of the new free-piston shock tunnel at GALCIT. AIAA Paper 92–3943Google Scholar
  23. Kortz S, Mclntyre TJ, Eitelberg G (1993) Experimental investigations of shock-shock interactions in the high enthalpy shock tunnel Göttingen (HEG). These ProceedingsGoogle Scholar
  24. Krek RM, Stalker RJ (1992) Experiments on Space Shuttle Orbiter models in a free piston shock tunnel. Aeronaut. Journal, Aug.-Sept., pp 249–259Google Scholar
  25. Labracherie L, Dumitrescu MP, Burschell Y, Houas L (1993) On the compression process in a free piston shock tunnel. Shock Waves 3.1: 19–23CrossRefADSGoogle Scholar
  26. Lukasiewicz J (1973) Experimental methods of hypersonics. Gas dynamics series, Vol. 3. Marcel Dekker, NYGoogle Scholar
  27. Maus JR, Laster ML, Hornung HG (1992) The G-Range impulse facility: a high-performance free piston shock tunnel. AIAA Paper 92–3946Google Scholar
  28. Mclntyre TJ, Maus JR, Laster ML, Eitelberg G (1993) Comparison of the flow in the high enthalpy shock tunnel in Göttingen with numerical simulations. These ProceedingsGoogle Scholar
  29. Palma PC, Houwing AFP, Sandeman RJ (1993) Absolute intensity measurements of impurity emissions in a shock tunnel and their consequences for laser-induced fluorescence experiments. Shock Waves, 3.1: 49–53CrossRefADSGoogle Scholar
  30. Park C (1990) Nonequilibrium hypersonic aerothermodynamics. Wiley, NYGoogle Scholar
  31. Sanderson SR, Sturtevant B (1993) Shock wave interactions in hypervelocity flow. These ProceedingsGoogle Scholar
  32. Shahpar S, Kennaugh A, Hall IM, Poll A (1992) Comparison of computation and experiment for a high enthalpy, heated-driver, shock-tube environment. AGARD Conf. Proc. 514, Theoretical and exprimental methods in hypersonic flowsGoogle Scholar
  33. Stalker RJ (1972) Develpment of a hypervelocity wind tunnel. J. Roy. Aeronaut. Soc. 76: 376–384Google Scholar
  34. Vincenti WG, Kruger CH jr (1965) Introduction to physical gas dynamics. Wiley, NYGoogle Scholar
  35. Witliff CE (1987) A survey of existing hypersonic ground test facilities - North America. AGARD Conf. Proc. 428, Aerodynamics of Hypersonic Lifting VehiclesGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. Eitelberg
    • 1
  1. 1.Institute for Experimental Fluid MechanicsDLRGermany

Personalised recommendations