Experimental Investigation of Shock-on-Shock Interactions in the High-Enthalpy Shock Tunnel Göttingen (HEG)

  • S. Kortz
  • G. Eitelberg
  • T. J. McIntyre
Conference paper

Abstract

The outcome of an experimental investigation of shock-on-shock interactions, created when an oblique shock impinges on a bow shock formed in front of a circular cylinder in a high enthalpy flow of 20 MJ/kg is presented. This interaction is known as the Edney type of interaction. The current study concentrated on Edney types III and IV, where the real gas dissociation effect results in the bow shock being much closer to the cylinder than in case of a perfect gas at the same incident flow Mach number. Flowfield pictures as well as pressure and heat transfer distributions on the cylinder are shown. The jet flow behind the bow shock, typical for the type IV interaction, was not observed and the peak pressure and heat loads are much less severe than was expected from the previous ideal gas investigations. Under the investigated flow conditions, the type III interaction can lead to heat transfer and pressure loads as high as those observed for the type IV interaction.

Key words

Pressure Heat transfer Interferogram Dissociation Non-equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brück S, Brenner G, Kortz S (1993) Numerical simulations of shock-shock interactions in non-equilibrium flow. DLR IB 221–293 A 09Google Scholar
  2. Edney B (1968) Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging Shock. FFA Rep. 115Google Scholar
  3. Eitelberg G, Fleck B, Mclntyre TJ (1992) Holographic interferometry ion the high enthalpy shock tunnel in Göttingen (HEG). Proc. NATO Advanced research Workshop on new trends in instrumentation for hypersonic research, ONERAGoogle Scholar
  4. Eitelberg G, Mclntyre TJ, Beck WH, Lacey J (1992) The high enthalpy shock tunnel in Göttingen. AIAA Paper 92–3942Google Scholar
  5. Grauer-Carstensen H (1991) Messung von Druck und Wärmefluss im HEG, Teil 1: Messung des Wärmeflusses. DLR IB 222–291 A26Google Scholar
  6. Henderson LF (1964) On the cConfluence of three shock waves in a perfect gas. Aeronautical Quarterly, MayGoogle Scholar
  7. Holden MS, Moselle JR, Lee J (1992) Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow. NASA-CR-181893Google Scholar
  8. Hornung H (1972) Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders. J. Fluid Mechs. 53, 1:149-A6CrossRefMATHADSGoogle Scholar
  9. Korgeki RH (1971) Survey of viscous Interactions associated with high Mach number flight. AIAA J. 9,5Google Scholar
  10. Kortz S, Mclntyre TJ, Eitelberg G (1992) Theoretische Untersuchung des Einflusses der Stick-stoffdissoziation auf Stoß/StoßWechselwirkungen zur Vorbereitung von Messungen im HEG. DLR IB 222–292 A25Google Scholar
  11. Watts JD (1968) Flight experience with shock impingement and ilnterference heating on the X-15–2 research airplane. NASA TM-X-1669Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • S. Kortz
    • 1
  • G. Eitelberg
    • 1
  • T. J. McIntyre
    • 2
  1. 1.Institute for Fluid MechanicsDLRGöttingenGermany
  2. 2.Dept, Physics and Theoretical PhysicsANUCanberraAustralia

Personalised recommendations